The PMDI project aims at radically improving the safety of urban mobility by extending STEP, an automotive data management and analytics platform, to support real-time and near-real-time use cases, particularly focusing on dangerous crossings at urban intersections. Such capabilities will be achieved by deploying STEP on Multi-access Edge Computing (MEC) hardware modules, and integrating within the platform fast AI video and image analytics as well as danger detection algorithms taking as inputs V2X messages from a variety of sources, including (virtual) on-board units and infrastructural sensors. To ensure that dangerous conditions are correctly learnt by AI algorithms, digital twins of the road sections under examination will be built leveraging domain specific language technologies designed to ease the integration.

PMDI: An AI-Enabled Ecosystem for Cooperative Urban Mobility / Fornaciari, W.; Agosta, G.; Fioravanti, M.; Giuseppetti, P.; Solinas, A.; Gallo, L.; Pernigotto, M.; Pedol, M.; Pro, F.; Amerini, I.; Papa, L.; Maiano, L.; Trovini, G.; Di Giamberardino, M.; Satta, P.. - 15227:(2025), pp. 231-246. ( 24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2024 Greece ) [10.1007/978-3-031-78380-7_19].

PMDI: An AI-Enabled Ecosystem for Cooperative Urban Mobility

Pro F.;Amerini I.;Papa L.;Maiano L.;
2025

Abstract

The PMDI project aims at radically improving the safety of urban mobility by extending STEP, an automotive data management and analytics platform, to support real-time and near-real-time use cases, particularly focusing on dangerous crossings at urban intersections. Such capabilities will be achieved by deploying STEP on Multi-access Edge Computing (MEC) hardware modules, and integrating within the platform fast AI video and image analytics as well as danger detection algorithms taking as inputs V2X messages from a variety of sources, including (virtual) on-board units and infrastructural sensors. To ensure that dangerous conditions are correctly learnt by AI algorithms, digital twins of the road sections under examination will be built leveraging domain specific language technologies designed to ease the integration.
2025
24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2024
AI video analytics; Cooperative Cyber-physical Systems; Urban Mobility; V2X
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
PMDI: An AI-Enabled Ecosystem for Cooperative Urban Mobility / Fornaciari, W.; Agosta, G.; Fioravanti, M.; Giuseppetti, P.; Solinas, A.; Gallo, L.; Pernigotto, M.; Pedol, M.; Pro, F.; Amerini, I.; Papa, L.; Maiano, L.; Trovini, G.; Di Giamberardino, M.; Satta, P.. - 15227:(2025), pp. 231-246. ( 24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2024 Greece ) [10.1007/978-3-031-78380-7_19].
File allegati a questo prodotto
File Dimensione Formato  
Fornaciari_PMDI_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.11 MB
Formato Adobe PDF
6.11 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact