For $\theta $ a small generic universal stability condition of degree $0$ and A a vector of integers adding up to $-k(2g-2+n)$, the spaces $\overline {\mathcal {M}}_{g,A}<^>\theta $ constructed in [AP21, HMP+22] are observed to lie inside the space $\textbf {Div}$ of [MW20], and their pullback under $\textbf {Rub} \to \textbf {Div}$ of loc. cit. to be smooth. This provides smooth and modular modifications $\widetilde {\mathcal {M}}_{g,A}<^>\theta $ of $\overline {\mathcal {M}}_{g,n}$ on which the logarithmic double ramification cycle can be calculated by several methods.
Smooth Compactifications of the Abel-Jacobi Section / Molcho, S.. - In: FORUM OF MATHEMATICS. SIGMA. - ISSN 2050-5094. - 11:(2023). [10.1017/fms.2023.83]
Smooth Compactifications of the Abel-Jacobi Section
Molcho S.
2023
Abstract
For $\theta $ a small generic universal stability condition of degree $0$ and A a vector of integers adding up to $-k(2g-2+n)$, the spaces $\overline {\mathcal {M}}_{g,A}<^>\theta $ constructed in [AP21, HMP+22] are observed to lie inside the space $\textbf {Div}$ of [MW20], and their pullback under $\textbf {Rub} \to \textbf {Div}$ of loc. cit. to be smooth. This provides smooth and modular modifications $\widetilde {\mathcal {M}}_{g,A}<^>\theta $ of $\overline {\mathcal {M}}_{g,n}$ on which the logarithmic double ramification cycle can be calculated by several methods.| File | Dimensione | Formato | |
|---|---|---|---|
|
Molcho_Smooth-compactifications_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
640.26 kB
Formato
Adobe PDF
|
640.26 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


