We provide numerical evidence towards three conjectures on harmonic numbers by Eswarathasan--Levine and Boyd. Let $J_p$ denote the set of integers $n\geq 1$ such that the harmonic number $H_n$ is divisible by a prime $p$. The conjectures state that: $(i)$ $J_p$ is always finite and of the order $O(p^2(\log\log p)^{2+\epsilon})$; $(ii)$ the set of primes for which $J_p$ is minimal (called harmonic primes) has density $e^{-1}$ among all primes; $(iii)$ no harmonic number is divisible by $p^4$. We prove $(i)$ and $(iii)$ for all $p\leq 16843$ with at most one exception, and enumerate harmonic primes up to~$50\cdot 10^5$, finding a proportion close to the expected density. Our work extends previous computations by Boyd by a factor of about $30$ and $50$, respectively.

ON ESWARATHASAN–LEVINE AND BOYD’S CONJECTURES FOR HARMONIC NUMBERS / Carofiglio, Leonardo; Cherubini, Giacomo; Gambini, Alessandro. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - (2025), pp. 1-11. [10.1017/s0004972725100154]

ON ESWARATHASAN–LEVINE AND BOYD’S CONJECTURES FOR HARMONIC NUMBERS

CAROFIGLIO, LEONARDO;GAMBINI, ALESSANDRO
2025

Abstract

We provide numerical evidence towards three conjectures on harmonic numbers by Eswarathasan--Levine and Boyd. Let $J_p$ denote the set of integers $n\geq 1$ such that the harmonic number $H_n$ is divisible by a prime $p$. The conjectures state that: $(i)$ $J_p$ is always finite and of the order $O(p^2(\log\log p)^{2+\epsilon})$; $(ii)$ the set of primes for which $J_p$ is minimal (called harmonic primes) has density $e^{-1}$ among all primes; $(iii)$ no harmonic number is divisible by $p^4$. We prove $(i)$ and $(iii)$ for all $p\leq 16843$ with at most one exception, and enumerate harmonic primes up to~$50\cdot 10^5$, finding a proportion close to the expected density. Our work extends previous computations by Boyd by a factor of about $30$ and $50$, respectively.
2025
harmonic number; harmonic sum; Wolstenholme prime; harmonic prime
01 Pubblicazione su rivista::01a Articolo in rivista
ON ESWARATHASAN–LEVINE AND BOYD’S CONJECTURES FOR HARMONIC NUMBERS / Carofiglio, Leonardo; Cherubini, Giacomo; Gambini, Alessandro. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - (2025), pp. 1-11. [10.1017/s0004972725100154]
File allegati a questo prodotto
File Dimensione Formato  
Carofiglio_On-eswarathasan-levine_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 424.09 kB
Formato Adobe PDF
424.09 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact