Starting from the geometric construction of the framed braid group, we define and study the framization of several Brauer-type monoids and also the set partition monoid, all of which appear in knot theory. We introduce the concept of deframization, which is a procedure to obtain a tied monoid from a given framed monoid. Furthermore, we show in detail how this procedure works on the monoids mentioned above. We also discuss the framization and deframization of some algebras, which are deformations, respectively, of the framized and deframized monoids discussed here

Framization and deframization / Aicardi, Francesca; Juyumaya, Jesus; Papi, Paolo. - In: ALGEBRAS AND REPRESENTATION THEORY. - ISSN 1386-923X. - (2025). [10.1007/s10468-025-10341-w]

Framization and deframization

Paolo Papi
2025

Abstract

Starting from the geometric construction of the framed braid group, we define and study the framization of several Brauer-type monoids and also the set partition monoid, all of which appear in knot theory. We introduce the concept of deframization, which is a procedure to obtain a tied monoid from a given framed monoid. Furthermore, we show in detail how this procedure works on the monoids mentioned above. We also discuss the framization and deframization of some algebras, which are deformations, respectively, of the framized and deframized monoids discussed here
2025
Monoid; framization; BT-algebra; Knot invariant
01 Pubblicazione su rivista::01a Articolo in rivista
Framization and deframization / Aicardi, Francesca; Juyumaya, Jesus; Papi, Paolo. - In: ALGEBRAS AND REPRESENTATION THEORY. - ISSN 1386-923X. - (2025). [10.1007/s10468-025-10341-w]
File allegati a questo prodotto
File Dimensione Formato  
Aicardi_Framization_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF   Contatta l'autore
Aicardi_preprint_Framization_2025.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 875.77 kB
Formato Adobe PDF
875.77 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact