This paper introduces a network model for analyzing time-varying dependencies in multivariate time series using hidden semi-Markov models. The model incorporates temporal heterogeneity by utilizing regime-dependent parameters governed by a latent finite-state semi-Markov chain and accommodates non-Gaussian features of empirical data through nonparanormal distributions. A Lasso-type penalty is employed to enforce sparsity in the network, ensuring the identification of only the most significant connections. Estimation is performed using an Expectation-Maximization algorithm, which does not assume restrictive assumptions on the states’ sojourn distributions. The empirical analysis focuses on daily returns of the 25 largest S&P 500 companies by market capitalization.

Estimation of undirected graphs for multivariate time series using hidden semi-Markov models / Merlo, Luca; Ferrante, Emilio; Foroni, Beatrice; Petrella, Lea. - (2025), pp. 36-41. (Intervento presentato al convegno Statistics for Innovation, SIS 2025 tenutosi a Genova) [10.1007/978-3-031-96033-8].

Estimation of undirected graphs for multivariate time series using hidden semi-Markov models

Emilio Ferrante;Beatrice Foroni;Lea Petrella
2025

Abstract

This paper introduces a network model for analyzing time-varying dependencies in multivariate time series using hidden semi-Markov models. The model incorporates temporal heterogeneity by utilizing regime-dependent parameters governed by a latent finite-state semi-Markov chain and accommodates non-Gaussian features of empirical data through nonparanormal distributions. A Lasso-type penalty is employed to enforce sparsity in the network, ensuring the identification of only the most significant connections. Estimation is performed using an Expectation-Maximization algorithm, which does not assume restrictive assumptions on the states’ sojourn distributions. The empirical analysis focuses on daily returns of the 25 largest S&P 500 companies by market capitalization.
2025
Statistics for Innovation, SIS 2025
graphical models; non-Gaussian features; sojourn time distribution
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Estimation of undirected graphs for multivariate time series using hidden semi-Markov models / Merlo, Luca; Ferrante, Emilio; Foroni, Beatrice; Petrella, Lea. - (2025), pp. 36-41. (Intervento presentato al convegno Statistics for Innovation, SIS 2025 tenutosi a Genova) [10.1007/978-3-031-96033-8].
File allegati a questo prodotto
File Dimensione Formato  
Ferrante_Estimation-undirected-graphs-SIS_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 508.77 kB
Formato Adobe PDF
508.77 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact