Recent advancements in Graph Neural Networks (GNN) have facilitated their widespread adoption in various applications, including recommendation systems. GNNs have proven to be effective in addressing the challenges posed by recommendation systems by efficiently modeling graphs in which nodes represent users or items and edges denote preference relationships. However, current GNN techniques represent nodes by means of a single static vector, which may inadequately capture the intricate complexities of users and items. To overcome these limitations, we propose a solution integrating a cutting-edge model inspired by category theory: Sheaf4Rec. Unlike single vector representations, Sheaf Neural Networks and their corresponding Laplacians represent each node (and edge) using a vector space. Our approach takes advantage of this theory and results in a more comprehensive representation that can be effectively exploited during inference, providing a versatile method applicable to a wide range of graph-related tasks and demonstrating unparalleled performance. Our proposed model exhibits a noteworthy relative improvement of up to 8.53% on F1-Score@10 and an impressive increase of up to 11.29% on NDCG@10, outperforming existing state-of-the-art models such as Neural Graph Collaborative Filtering (NGCF), KGTORe and other recently developed GNN-based models. In addition to its superior predictive capabilities, Sheaf4Rec shows remarkable improvements in terms of efficiency: we observe substantial runtime improvements ranging from 2.5% up to 37% when compared to other GNN-based competitor models, indicating a more efficient way of handling information while achieving better performance. Code is available at https://github.com/antoniopurificato/Sheaf4Rec.

Sheaf4Rec: Sheaf Neural Networks for Graph-based Recommender Systems / Purificato, Antonio; Cassarà, Giulia; Siciliano, Federico; Liò, Pietro; Silvestri, Fabrizio. - In: ACM TRANSACTIONS ON RECOMMENDER SYSTEMS. - ISSN 2770-6699. - (2025). [10.1145/3742898]

Sheaf4Rec: Sheaf Neural Networks for Graph-based Recommender Systems

Purificato, Antonio;Siciliano, Federico;Silvestri, Fabrizio
2025

Abstract

Recent advancements in Graph Neural Networks (GNN) have facilitated their widespread adoption in various applications, including recommendation systems. GNNs have proven to be effective in addressing the challenges posed by recommendation systems by efficiently modeling graphs in which nodes represent users or items and edges denote preference relationships. However, current GNN techniques represent nodes by means of a single static vector, which may inadequately capture the intricate complexities of users and items. To overcome these limitations, we propose a solution integrating a cutting-edge model inspired by category theory: Sheaf4Rec. Unlike single vector representations, Sheaf Neural Networks and their corresponding Laplacians represent each node (and edge) using a vector space. Our approach takes advantage of this theory and results in a more comprehensive representation that can be effectively exploited during inference, providing a versatile method applicable to a wide range of graph-related tasks and demonstrating unparalleled performance. Our proposed model exhibits a noteworthy relative improvement of up to 8.53% on F1-Score@10 and an impressive increase of up to 11.29% on NDCG@10, outperforming existing state-of-the-art models such as Neural Graph Collaborative Filtering (NGCF), KGTORe and other recently developed GNN-based models. In addition to its superior predictive capabilities, Sheaf4Rec shows remarkable improvements in terms of efficiency: we observe substantial runtime improvements ranging from 2.5% up to 37% when compared to other GNN-based competitor models, indicating a more efficient way of handling information while achieving better performance. Code is available at https://github.com/antoniopurificato/Sheaf4Rec.
2025
Recommender systems; Graph Neural Networks; Sheaf Theory
01 Pubblicazione su rivista::01a Articolo in rivista
Sheaf4Rec: Sheaf Neural Networks for Graph-based Recommender Systems / Purificato, Antonio; Cassarà, Giulia; Siciliano, Federico; Liò, Pietro; Silvestri, Fabrizio. - In: ACM TRANSACTIONS ON RECOMMENDER SYSTEMS. - ISSN 2770-6699. - (2025). [10.1145/3742898]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741348
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact