An observer design framework is introduced for ordinary differential equation (ODE) systems based on various types of existing or even novel one-parameter symmetries (exact, asymptotic and variational) ending up with different types of semi-global and global observers, by considering bounded or unbounded system solutions and requiring asymptotic- or prescribed-time error convergence. We compare some of these symmetry-based observers with existing observers, recovering for instance the same performances as high-gain semiglobal observers and the finite-time convergence capabilities of sliding mode observers.
Symmetry-based observers for ODE systems / Battilotti, Stefano. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 70:12(2025), pp. 8165-8180. [10.1109/TAC.2025.3582172]
Symmetry-based observers for ODE systems
Stefano Battilotti
2025
Abstract
An observer design framework is introduced for ordinary differential equation (ODE) systems based on various types of existing or even novel one-parameter symmetries (exact, asymptotic and variational) ending up with different types of semi-global and global observers, by considering bounded or unbounded system solutions and requiring asymptotic- or prescribed-time error convergence. We compare some of these symmetry-based observers with existing observers, recovering for instance the same performances as high-gain semiglobal observers and the finite-time convergence capabilities of sliding mode observers.| File | Dimensione | Formato | |
|---|---|---|---|
|
Battilotti_postprint_Symmetry-Based_2025.pdf
accesso aperto
Note: DOI 10.1109/TAC.2025.3582172
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
570.97 kB
Formato
Adobe PDF
|
570.97 kB | Adobe PDF | |
|
Battilotti_Symmetry-Based_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
664.2 kB
Formato
Adobe PDF
|
664.2 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


