Highest-Density Regions (HDRs) allow uncertainty estimation of predictions, estimates, or distributions of interest by identifying the samples with the highest density while covering the smallest possible volume. Therefore, they ensure the greatest efficiency. This paper extends the framework proposed by [3] to estimate HDRs using neighborhood measures. We generalize their approach to a multivariate setting, using both nonparametric distance-based measures and parametric measures making use of vine copulas.

Using Vine Copulas for Estimating Highest-Density Regions in Multivariate Data / Masillo, Emanuele; Deliu, Nina. - (2025), pp. 488-493. ( Scientific Meeting of the Italian Statistical Society Genova ) [10.1007/978-3-031-95995-0_81].

Using Vine Copulas for Estimating Highest-Density Regions in Multivariate Data

Deliu, Nina
Ultimo
Supervision
2025

Abstract

Highest-Density Regions (HDRs) allow uncertainty estimation of predictions, estimates, or distributions of interest by identifying the samples with the highest density while covering the smallest possible volume. Therefore, they ensure the greatest efficiency. This paper extends the framework proposed by [3] to estimate HDRs using neighborhood measures. We generalize their approach to a multivariate setting, using both nonparametric distance-based measures and parametric measures making use of vine copulas.
2025
Scientific Meeting of the Italian Statistical Society
Highest-density regions; Vine copulas
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Using Vine Copulas for Estimating Highest-Density Regions in Multivariate Data / Masillo, Emanuele; Deliu, Nina. - (2025), pp. 488-493. ( Scientific Meeting of the Italian Statistical Society Genova ) [10.1007/978-3-031-95995-0_81].
File allegati a questo prodotto
File Dimensione Formato  
Deliu_Using-Vine_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 503.22 kB
Formato Adobe PDF
503.22 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact