A finite mixture model is introduced for the unsupervised classification of three-way ordinal data. Specifically, the finite mixture of Gaussians is observed by a discretized version of its variables. The approach focuses on reducing the number of model parameters by identifying a subspace that contains the information sufficient to classify the observations. This process also helps to detect noise variables and/or occasions. The group-specific means and covariances are reparameterised using parsimonious models taking into account the three-way structure of the data. Estimation is performed using a composite likelihood approach to reduce the computational complexity. Parameter estimates are computed by means of an EM-like algorithm.

Clustering Three-Way Ordinal Data on Reduced Spaces / Ranalli, Monia; Rocci, Roberto. - (2025), pp. 503-508. (Intervento presentato al convegno SIS 2025 tenutosi a Genova).

Clustering Three-Way Ordinal Data on Reduced Spaces

Ranalli Monia
;
Rocci Roberto
2025

Abstract

A finite mixture model is introduced for the unsupervised classification of three-way ordinal data. Specifically, the finite mixture of Gaussians is observed by a discretized version of its variables. The approach focuses on reducing the number of model parameters by identifying a subspace that contains the information sufficient to classify the observations. This process also helps to detect noise variables and/or occasions. The group-specific means and covariances are reparameterised using parsimonious models taking into account the three-way structure of the data. Estimation is performed using a composite likelihood approach to reduce the computational complexity. Parameter estimates are computed by means of an EM-like algorithm.
2025
SIS 2025
three-way data; ordinal data; finite mixture models; dimensionality reduction
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Clustering Three-Way Ordinal Data on Reduced Spaces / Ranalli, Monia; Rocci, Roberto. - (2025), pp. 503-508. (Intervento presentato al convegno SIS 2025 tenutosi a Genova).
File allegati a questo prodotto
File Dimensione Formato  
Ranalli_clustering-three-way_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 418.9 kB
Formato Adobe PDF
418.9 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1741328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact