Developing efficient and durable anion-exchange membranes (AEMs) is essential for advancing electrochemical energy technologies such as water electrolyzers. This study presents a methodological approach for fabricating an AEM by electrospinning a polysulfone (PSU)-based nanofibrous matrix, followed by post-activation using an ionomer solution containing quaternary ammonium (QA) functional groups. Electrospinning is a promising and versatile technique for membrane fabrication, particularly in the context of green hydrogen production via AEM water electrolysis. Its ability to produce nanofibrous matrixes with tunable morphology and properties makes it an attractive alternative to conventional methods for research across various applications. This study demonstrated the feasibility of fabricating electrospun AEMs using polysulfone as a backbone material, suggesting its promise as a potentially scalable solution to manage the high-cost issue of commercial AEMs for future hydrogen production. The resulting composite membrane exhibited ionic conductivity and electrochemical performance comparable to a benchmark membrane fabricated by activating a commercial Celgard 3401 support via phase inversion. Although the mechanical strength of the electrospun membrane was lower than that of the commercial support, its good electrochemical characteristics—combined with the potential for roll-to-roll electrospinning—underscore the promise of this approach as a viable, economically scalable strategy for future hydrogen production WE technologies.
Fabrication and characterization of anionic composite membranes produced by electrospinning method / Rakhshani, Somayyeh; Araneo, Rodolfo; Alexander Hein, Luis; Rinaldi, Antonio; Pozio, Alfonso. - In: POLYMERS. - ISSN 2073-4360. - 17:(2025), pp. 1-15. [10.3390/polym17121677]
Fabrication and characterization of anionic composite membranes produced by electrospinning method
Somayyeh RakhshaniPrimo
;Rodolfo AraneoSecondo
;Antonio Rinaldi
;Alfonso Pozio
2025
Abstract
Developing efficient and durable anion-exchange membranes (AEMs) is essential for advancing electrochemical energy technologies such as water electrolyzers. This study presents a methodological approach for fabricating an AEM by electrospinning a polysulfone (PSU)-based nanofibrous matrix, followed by post-activation using an ionomer solution containing quaternary ammonium (QA) functional groups. Electrospinning is a promising and versatile technique for membrane fabrication, particularly in the context of green hydrogen production via AEM water electrolysis. Its ability to produce nanofibrous matrixes with tunable morphology and properties makes it an attractive alternative to conventional methods for research across various applications. This study demonstrated the feasibility of fabricating electrospun AEMs using polysulfone as a backbone material, suggesting its promise as a potentially scalable solution to manage the high-cost issue of commercial AEMs for future hydrogen production. The resulting composite membrane exhibited ionic conductivity and electrochemical performance comparable to a benchmark membrane fabricated by activating a commercial Celgard 3401 support via phase inversion. Although the mechanical strength of the electrospun membrane was lower than that of the commercial support, its good electrochemical characteristics—combined with the potential for roll-to-roll electrospinning—underscore the promise of this approach as a viable, economically scalable strategy for future hydrogen production WE technologies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Rakhshani_Fabrication and Characterization_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


