Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence. However, the consequences of these events for the organism are not yet understood. Here, we show that sting is responsible for premature aging of telomerase-deficient zebrafish. We generated sting-/- tert-/- double-mutant animals and observed a thorough rescue of tert-/- phenotypes. At the cellular level, lack of cGAS-STING in tert mutants resulted in reduced senescence, increased cell proliferation, and decreased inflammation despite similarly short telomeres. Critically, absence of sting function resulted in dampening of the DNA damage response and reduced p53 levels. At the organism level, sting-/- tert-/- zebrafish regained fertility, showed delayed cachexia, and decreased cancer incidence, resulting in increased healthspan and lifespan of telomerase mutant animals.
cGAS-STING are responsible for premature aging of telomerase-deficient zebrafish / Şerifoğlu, Naz; Allavena, Giulia; Lopes-Bastos, Bruno; Marzullo, Marta; Marques, Andreia; Colibert, Pauline; Bousounis, Pavlos; Trompouki, Eirini; Ferreira, Miguel Godinho. - In: EMBO JOURNAL. - ISSN 1460-2075. - (2025). [10.1038/s44318-025-00482-5]
cGAS-STING are responsible for premature aging of telomerase-deficient zebrafish
Marzullo, MartaWriting – Review & Editing
;Ferreira, Miguel Godinho
Ultimo
2025
Abstract
Telomere shortening occurs in multiple tissues throughout aging. When telomeres become critically short, they trigger DNA-damage responses and p53 stabilization, leading to apoptosis or replicative senescence. In vitro, cells with short telomeres activate the cGAS-STING innate immune pathway resulting in type-I interferon-based inflammation and senescence. However, the consequences of these events for the organism are not yet understood. Here, we show that sting is responsible for premature aging of telomerase-deficient zebrafish. We generated sting-/- tert-/- double-mutant animals and observed a thorough rescue of tert-/- phenotypes. At the cellular level, lack of cGAS-STING in tert mutants resulted in reduced senescence, increased cell proliferation, and decreased inflammation despite similarly short telomeres. Critically, absence of sting function resulted in dampening of the DNA damage response and reduced p53 levels. At the organism level, sting-/- tert-/- zebrafish regained fertility, showed delayed cachexia, and decreased cancer incidence, resulting in increased healthspan and lifespan of telomerase mutant animals.| File | Dimensione | Formato | |
|---|---|---|---|
|
şerifoğlu_cGAS_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


