Electroencephalography (EEG) signals present unique challenges for classification tasks due to their non-stationary and high-dimensional nature. In this paper, we propose a novel method that combines Riemannian geometry with deep learning to classify multi-class EEG data. Specifically, we compute covariance matrices of EEG signals and map them onto the tangent space of the Symmetric Positive Definite (SPD) manifold. A deep neural network architecture, termed NeuroSPDNet, is designed to effectively learn from these tangent space features. The method incorporates cross-validation for robust performance evaluation and utilizes Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves to assess classification effectiveness across four classes. Experimental results demonstrate that the proposed approach achieves an overall accuracy of 96.23% with high precision and recall, significantly outperforming traditional approaches in EEG signal classification.

Enhanced EEG classification via Riemannian normalizing flows and deep neural networks / Tibermacine, I. E.; Tibermacine, A.; Zouai, M.; Russo, S.; Bouchelaghem, S.; Napoli, C.. - (2025). (Intervento presentato al convegno 2025 International Symposium on Innovative Informatics of Biskra, ISNIB 2025 tenutosi a Biskra; Algeria) [10.1109/ISNIB64820.2025.10982792].

Enhanced EEG classification via Riemannian normalizing flows and deep neural networks

Tibermacine I. E.
Primo
Investigation
;
Russo S.
Methodology
;
Bouchelaghem S.
Validation
;
Napoli C.
Ultimo
Supervision
2025

Abstract

Electroencephalography (EEG) signals present unique challenges for classification tasks due to their non-stationary and high-dimensional nature. In this paper, we propose a novel method that combines Riemannian geometry with deep learning to classify multi-class EEG data. Specifically, we compute covariance matrices of EEG signals and map them onto the tangent space of the Symmetric Positive Definite (SPD) manifold. A deep neural network architecture, termed NeuroSPDNet, is designed to effectively learn from these tangent space features. The method incorporates cross-validation for robust performance evaluation and utilizes Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves to assess classification effectiveness across four classes. Experimental results demonstrate that the proposed approach achieves an overall accuracy of 96.23% with high precision and recall, significantly outperforming traditional approaches in EEG signal classification.
2025
2025 International Symposium on Innovative Informatics of Biskra, ISNIB 2025
component; formatting; insert; style; styling
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Enhanced EEG classification via Riemannian normalizing flows and deep neural networks / Tibermacine, I. E.; Tibermacine, A.; Zouai, M.; Russo, S.; Bouchelaghem, S.; Napoli, C.. - (2025). (Intervento presentato al convegno 2025 International Symposium on Innovative Informatics of Biskra, ISNIB 2025 tenutosi a Biskra; Algeria) [10.1109/ISNIB64820.2025.10982792].
File allegati a questo prodotto
File Dimensione Formato  
Tibermacine_Enhanced_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 409.09 kB
Formato Adobe PDF
409.09 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact