Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDPE and a PET-Aluminum-LDPE (PAL) trilaminate. To minimize material waste and optimize the experimental process, we first conducted numerical simulations of additive manufacturing. Using Digimat-AM 2021.1 software, we analyzed residual stresses and warpage in an LDPE/PAL composite with a 10 wt% filler content, processed through the FFF technique. Three key printing parameters, including printing speed and infill pattern, were varied across different levels to assess their impact. Once the optimal combination of parameters for minimizing residual stresses and warpage was identified, we proceeded with the experimental phase, printing objects of increasing complexity to validate the correlation between numerical predictions and the 3D-printed models. The successful fabrication of all geometries under optimized conditions confirmed the numerical predictions, particularly the reduction in warpage and residual stress, validating the material’s viability for additive manufacturing. These findings support the potential application of the LDPE/PAL composite for in situ resource utilization strategies in long-term space missions.

Printability optimization of LDPE-based composites for tool production in crewed space missions: from numerical simulation to additive manufacturing / De Rosa, Federica; Laurenzi, Susanna. - In: AEROSPACE. - ISSN 2226-4310. - 12:(2025), pp. 1-20. [10.3390/aerospace12060530]

Printability optimization of LDPE-based composites for tool production in crewed space missions: from numerical simulation to additive manufacturing

Federica De Rosa
Primo
;
Susanna Laurenzi
Secondo
2025

Abstract

Fused filament fabrication (FFF) is a 3D printing technology that has been successfully demonstrated aboard the International Space Station (ISS), proving its suitability for space applications. In this study, we aimed to apply FFF to the 3D printing of recycled space beverage packaging, made of LDPE and a PET-Aluminum-LDPE (PAL) trilaminate. To minimize material waste and optimize the experimental process, we first conducted numerical simulations of additive manufacturing. Using Digimat-AM 2021.1 software, we analyzed residual stresses and warpage in an LDPE/PAL composite with a 10 wt% filler content, processed through the FFF technique. Three key printing parameters, including printing speed and infill pattern, were varied across different levels to assess their impact. Once the optimal combination of parameters for minimizing residual stresses and warpage was identified, we proceeded with the experimental phase, printing objects of increasing complexity to validate the correlation between numerical predictions and the 3D-printed models. The successful fabrication of all geometries under optimized conditions confirmed the numerical predictions, particularly the reduction in warpage and residual stress, validating the material’s viability for additive manufacturing. These findings support the potential application of the LDPE/PAL composite for in situ resource utilization strategies in long-term space missions.
2025
recycling; space beverage packaging; additive manufacturing simulation; 3D printing; fused filament fabrication
01 Pubblicazione su rivista::01a Articolo in rivista
Printability optimization of LDPE-based composites for tool production in crewed space missions: from numerical simulation to additive manufacturing / De Rosa, Federica; Laurenzi, Susanna. - In: AEROSPACE. - ISSN 2226-4310. - 12:(2025), pp. 1-20. [10.3390/aerospace12060530]
File allegati a questo prodotto
File Dimensione Formato  
De Rosa_Printability Optimization _2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact