This paper represents a short review of the most widely adopted types of models for rainfall nowcasting, which is an important component for early warning systems (EWSs). Specifically, the authors focus on: (1) extrapolation techniques from remote sensing observations; (2) numerical weather prediction (NWP) models; (3) stochastic models; (4) deep learning models. Moreover, the possibility of realizing blended systems with two or more different kinds of models is also described, in order to overcome the limitations of using only a single model and to take advantage of pros from the considered model ensemble. However, both single and blended models are affected by uncertainty, a topic characterized by ongoing debates in the scientific community. In this context, evaluation of predictive uncertainty (PU) is also discussed, as it provides an important perspective for an EWS, enabling informed decision making based on the forecasts of one or multiple models.

Rainfall nowcasting models: state of the art and possible future perspectives / De Luca, D. L.; Napolitano, F.; Kim, D.; Onof, C.; Biondi, D.; Wang, L. -P.; Russo, F.; Ridolfi, E.; Moccia, B.; Marconi, F.. - In: HYDROLOGICAL SCIENCES JOURNAL. - ISSN 0262-6667. - (2025), pp. 1-20. [10.1080/02626667.2025.2490780]

Rainfall nowcasting models: state of the art and possible future perspectives

De Luca D. L.
;
Napolitano F.;Russo F.;Ridolfi E.;Moccia B.;Marconi F.
2025

Abstract

This paper represents a short review of the most widely adopted types of models for rainfall nowcasting, which is an important component for early warning systems (EWSs). Specifically, the authors focus on: (1) extrapolation techniques from remote sensing observations; (2) numerical weather prediction (NWP) models; (3) stochastic models; (4) deep learning models. Moreover, the possibility of realizing blended systems with two or more different kinds of models is also described, in order to overcome the limitations of using only a single model and to take advantage of pros from the considered model ensemble. However, both single and blended models are affected by uncertainty, a topic characterized by ongoing debates in the scientific community. In this context, evaluation of predictive uncertainty (PU) is also discussed, as it provides an important perspective for an EWS, enabling informed decision making based on the forecasts of one or multiple models.
2025
rainfall nowcasting; NWP models; stochastic models; deep learning; predictive uncertainty
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Rainfall nowcasting models: state of the art and possible future perspectives / De Luca, D. L.; Napolitano, F.; Kim, D.; Onof, C.; Biondi, D.; Wang, L. -P.; Russo, F.; Ridolfi, E.; Moccia, B.; Marconi, F.. - In: HYDROLOGICAL SCIENCES JOURNAL. - ISSN 0262-6667. - (2025), pp. 1-20. [10.1080/02626667.2025.2490780]
File allegati a questo prodotto
File Dimensione Formato  
DeLuca_Rainfall-Nowcasting-models_2025.pdf

accesso aperto

Note: Frontespizio, articolo, bibliografia
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 7.99 MB
Formato Adobe PDF
7.99 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact