Biotic interactions are expected to influence species' responses to global changes, but they are rarely considered across broad spatial extents. Abiotic factors are thought to operate at larger spatial scales, while biotic factors, such as species interactions, are considered more important at local scales within communities, in part because of the knowledge gap on species interactions at large spatial scales (i.e., the Eltonian shortfall). We assessed, at a continental scale, (i) the importance of biotic interactions, through food webs, on species distributions, and (ii) how biotic interactions under scenarios of climate and land-use change may affect the distribution of the brown bear (Ursus arctos). We built a highly detailed, spatially dynamic, and empirically sampled food web based on the energy contribution of 276 brown bear food species from different taxa (plants, vertebrates, and invertebrates) and their ensemble habitat models at high resolution across Europe. Then, combining energy contribution and predicted habitat of food species, we modelled energy contribution across space and included these layers within Bayesian-based models of the brown bear distribution in Europe. The inclusion of biotic interactions considerably improved our understanding of brown bear distribution at large (continental) scales compared with Bayesian models including only abiotic factors (climate and land use). Predicted future range shifts, which included changes in the distribution of food species, varied greatly when considering various scenarios of change in biotic factors, providing a warning that future indirect climate and land-use change are likely to have strong but highly uncertain impacts on species biogeography. Our study confirmed that advancing our understanding of ecological networks of species interactions will improve future projections of biodiversity change, especially for modelling species distributions and their functional role under climate and land-use change scenarios, which is key for effective conservation of biodiversity and ecosystem services.

Trophic interactions are key to understanding the effects of global change on the distribution and functional role of the brown bear / Lucas, Pablo M.; Thuiller, Wilfried; Talluto, Lauren; Polaina, Ester; Albrecht, Jörg; Selva, Nuria; De Barba, Marta; Penteriani, Vincenzo; Guéguen, Maya; Balkenhol, Niko; Dutta, Trishna; Fedorca, Ancuta; Frank, Shane C.; Zedrosser, Andreas; Afonso‐jordana, Ivan; Ambarlı, Hüseyin; Ballesteros, Fernando; Bashta, Andriy‐taras; Bilgin, Cemal Can; Bogdanović, Neda; Bojārs, Edgars; Bojarska, Katarzyna; Bragalanti, Natalia; Brøseth, Henrik; Chynoweth, Mark W.; Ćirović, Duško; Ciucci, Paolo; Corradini, Andrea; De Angelis, Daniele; De Gabriel Hernando, Miguel; Domokos, Csaba; Dutsov, Aleksander; Ertürk, Alper; Filacorda, Stefano; Frangini, Lorenzo; Groff, Claudio; Heikkinen, Samuli; Hoxha, Bledi; Huber, Djuro; Huitu, Otso; Ionescu, Georgeta; Ionescu, Ovidiu; Jerina, Klemen; Jurj, Ramon; Karamanlidis, Alexandros A.; Kindberg, Jonas; Kojola, Ilpo; López‐bao, José Vicente; Männil, Peep; Melovski, Dime; Mertzanis, Yorgos; Molinari, Paolo; Molinari‐jobin, Anja; Mustoni, Andrea; Naves, Javier; Ogurtsov, Sergey; Özüt, Deniz; Palazón, Santiago; Pedrotti, Luca; Perović, Aleksandar; Piminov, Vladimir N.; Pop, Ioan‐mihai; Popa, Marius; Psaralexi, Maria; Quenette, Pierre‐yves; Rauer, Georg; Reljic, Slaven; Revilla, Eloy; Saarma, Urmas; Saveljev, Alexander P.; Sayar, Ali Onur; Şekercioğlu, Çagan H.; Sergiel, Agnieszka; Sîrbu, George; Skrbinšek, Tomaž; Skuban, Michaela; Soyumert, Anil; Stojanov, Aleksandar; Tammeleht, Egle; Tirronen, Konstantin; Trajçe, Aleksandër; Trbojević, Igor; Trbojević, Tijana; Zięba, Filip; Zlatanova, Diana; Zwijacz‐kozica, Tomasz; Pollock, Laura J.. - In: GLOBAL CHANGE BIOLOGY. - ISSN 1354-1013. - 31:6(2025). [10.1111/gcb.70252]

Trophic interactions are key to understanding the effects of global change on the distribution and functional role of the brown bear

Lucas, Pablo M.
Primo
;
Ciucci, Paolo;
2025

Abstract

Biotic interactions are expected to influence species' responses to global changes, but they are rarely considered across broad spatial extents. Abiotic factors are thought to operate at larger spatial scales, while biotic factors, such as species interactions, are considered more important at local scales within communities, in part because of the knowledge gap on species interactions at large spatial scales (i.e., the Eltonian shortfall). We assessed, at a continental scale, (i) the importance of biotic interactions, through food webs, on species distributions, and (ii) how biotic interactions under scenarios of climate and land-use change may affect the distribution of the brown bear (Ursus arctos). We built a highly detailed, spatially dynamic, and empirically sampled food web based on the energy contribution of 276 brown bear food species from different taxa (plants, vertebrates, and invertebrates) and their ensemble habitat models at high resolution across Europe. Then, combining energy contribution and predicted habitat of food species, we modelled energy contribution across space and included these layers within Bayesian-based models of the brown bear distribution in Europe. The inclusion of biotic interactions considerably improved our understanding of brown bear distribution at large (continental) scales compared with Bayesian models including only abiotic factors (climate and land use). Predicted future range shifts, which included changes in the distribution of food species, varied greatly when considering various scenarios of change in biotic factors, providing a warning that future indirect climate and land-use change are likely to have strong but highly uncertain impacts on species biogeography. Our study confirmed that advancing our understanding of ecological networks of species interactions will improve future projections of biodiversity change, especially for modelling species distributions and their functional role under climate and land-use change scenarios, which is key for effective conservation of biodiversity and ecosystem services.
2025
Ursus arctos; climate change; community; ecosystem; food web; habitat; human impact; land use; predator–prey; species distribution model
01 Pubblicazione su rivista::01a Articolo in rivista
Trophic interactions are key to understanding the effects of global change on the distribution and functional role of the brown bear / Lucas, Pablo M.; Thuiller, Wilfried; Talluto, Lauren; Polaina, Ester; Albrecht, Jörg; Selva, Nuria; De Barba, Marta; Penteriani, Vincenzo; Guéguen, Maya; Balkenhol, Niko; Dutta, Trishna; Fedorca, Ancuta; Frank, Shane C.; Zedrosser, Andreas; Afonso‐jordana, Ivan; Ambarlı, Hüseyin; Ballesteros, Fernando; Bashta, Andriy‐taras; Bilgin, Cemal Can; Bogdanović, Neda; Bojārs, Edgars; Bojarska, Katarzyna; Bragalanti, Natalia; Brøseth, Henrik; Chynoweth, Mark W.; Ćirović, Duško; Ciucci, Paolo; Corradini, Andrea; De Angelis, Daniele; De Gabriel Hernando, Miguel; Domokos, Csaba; Dutsov, Aleksander; Ertürk, Alper; Filacorda, Stefano; Frangini, Lorenzo; Groff, Claudio; Heikkinen, Samuli; Hoxha, Bledi; Huber, Djuro; Huitu, Otso; Ionescu, Georgeta; Ionescu, Ovidiu; Jerina, Klemen; Jurj, Ramon; Karamanlidis, Alexandros A.; Kindberg, Jonas; Kojola, Ilpo; López‐bao, José Vicente; Männil, Peep; Melovski, Dime; Mertzanis, Yorgos; Molinari, Paolo; Molinari‐jobin, Anja; Mustoni, Andrea; Naves, Javier; Ogurtsov, Sergey; Özüt, Deniz; Palazón, Santiago; Pedrotti, Luca; Perović, Aleksandar; Piminov, Vladimir N.; Pop, Ioan‐mihai; Popa, Marius; Psaralexi, Maria; Quenette, Pierre‐yves; Rauer, Georg; Reljic, Slaven; Revilla, Eloy; Saarma, Urmas; Saveljev, Alexander P.; Sayar, Ali Onur; Şekercioğlu, Çagan H.; Sergiel, Agnieszka; Sîrbu, George; Skrbinšek, Tomaž; Skuban, Michaela; Soyumert, Anil; Stojanov, Aleksandar; Tammeleht, Egle; Tirronen, Konstantin; Trajçe, Aleksandër; Trbojević, Igor; Trbojević, Tijana; Zięba, Filip; Zlatanova, Diana; Zwijacz‐kozica, Tomasz; Pollock, Laura J.. - In: GLOBAL CHANGE BIOLOGY. - ISSN 1354-1013. - 31:6(2025). [10.1111/gcb.70252]
File allegati a questo prodotto
File Dimensione Formato  
Lucas_Trophic_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 9.06 MB
Formato Adobe PDF
9.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact