We introduce a new framework for generating counterfactual recourse in machine learning that embraces a “human-in-the-loop" approach by incorporating user preferences. Traditional counterfactual tools neglect individual user preferences when adjusting features. To address this, we tackle recourse generation as a multi-objective optimization problem, integrating conventional constraints with user preferences. Our framework, termed HIP-CORE, is specifically crafted to estimate these preferences during the counterfactual generation phase. We also introduce the “Personal Validity" as a measure of the effectiveness of recourse for individual users. Through extensive theoretical and empirical analysis, we validate the benefits of our proposal. Overall, this work enhances counterfactual reasoning and paves the way for more personalized algorithmic recourse. Code is available at https://github.com/federicosiciliano/hip-core.git.

Human-in-the-Loop Personalized Counterfactual Recourse / Abrate, Carlo; Siciliano, Federico; Bonchi, Francesco; Silvestri, Fabrizio. - 2155:(2024), pp. 18-38. ( 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 Valletta; Malta ) [10.1007/978-3-031-63800-8_2].

Human-in-the-Loop Personalized Counterfactual Recourse

Abrate, Carlo
Co-primo
;
Siciliano, Federico
Co-primo
;
Bonchi, Francesco;Silvestri, Fabrizio
2024

Abstract

We introduce a new framework for generating counterfactual recourse in machine learning that embraces a “human-in-the-loop" approach by incorporating user preferences. Traditional counterfactual tools neglect individual user preferences when adjusting features. To address this, we tackle recourse generation as a multi-objective optimization problem, integrating conventional constraints with user preferences. Our framework, termed HIP-CORE, is specifically crafted to estimate these preferences during the counterfactual generation phase. We also introduce the “Personal Validity" as a measure of the effectiveness of recourse for individual users. Through extensive theoretical and empirical analysis, we validate the benefits of our proposal. Overall, this work enhances counterfactual reasoning and paves the way for more personalized algorithmic recourse. Code is available at https://github.com/federicosiciliano/hip-core.git.
2024
2nd World Conference on Explainable Artificial Intelligence, xAI 2024
Algorithmic Recourse; Explainability; Personalized Counterfactual
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Human-in-the-Loop Personalized Counterfactual Recourse / Abrate, Carlo; Siciliano, Federico; Bonchi, Francesco; Silvestri, Fabrizio. - 2155:(2024), pp. 18-38. ( 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 Valletta; Malta ) [10.1007/978-3-031-63800-8_2].
File allegati a questo prodotto
File Dimensione Formato  
Abrate_Human-in-the-loop_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 924.44 kB
Formato Adobe PDF
924.44 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact