With the arrival of 5G technology, networks face critical challenges in detecting anomalies that can significantly impact performance and reliability. This paper introduces QAED (Quantized Auto Encoder Detector), a novel deep learning approach for anomaly detection in 5G networks with three key innovations: 1) a vector quantization mechanism that effectively captures discrete network states, 2) a kernel density estimation preprocessing step that enables detection of both outliers and distribution shifts, and 3) an integrated architecture that processes multivariate time series data in a unified framework. We provide a detailed evaluation of our model across 5G data scenarios, demonstrating its enhanced accuracy and efficiency in anomaly detection compared to existing state-of-the-art methods, with gains of up to 8%.

Quantized Auto Encoder-Based Anomaly Detection for Multivariate Time Series Data in 5G Networks / Trappolini, Giovanni; Purificato, Antonio; Siciliano, Federico; D'Addona, Luigi; Spagnolo, Anna Maria; Dato, Domenico; Silvestri, Fabrizio. - In: IEEE ACCESS. - ISSN 2169-3536. - 13:(2025), pp. 82668-82679. [10.1109/access.2025.3568133]

Quantized Auto Encoder-Based Anomaly Detection for Multivariate Time Series Data in 5G Networks

Trappolini, Giovanni
Conceptualization
;
Purificato, Antonio
Methodology
;
Siciliano, Federico
Writing – Review & Editing
;
Silvestri, Fabrizio
Project Administration
2025

Abstract

With the arrival of 5G technology, networks face critical challenges in detecting anomalies that can significantly impact performance and reliability. This paper introduces QAED (Quantized Auto Encoder Detector), a novel deep learning approach for anomaly detection in 5G networks with three key innovations: 1) a vector quantization mechanism that effectively captures discrete network states, 2) a kernel density estimation preprocessing step that enables detection of both outliers and distribution shifts, and 3) an integrated architecture that processes multivariate time series data in a unified framework. We provide a detailed evaluation of our model across 5G data scenarios, demonstrating its enhanced accuracy and efficiency in anomaly detection compared to existing state-of-the-art methods, with gains of up to 8%.
2025
5G; anomaly detection; deep learning
01 Pubblicazione su rivista::01a Articolo in rivista
Quantized Auto Encoder-Based Anomaly Detection for Multivariate Time Series Data in 5G Networks / Trappolini, Giovanni; Purificato, Antonio; Siciliano, Federico; D'Addona, Luigi; Spagnolo, Anna Maria; Dato, Domenico; Silvestri, Fabrizio. - In: IEEE ACCESS. - ISSN 2169-3536. - 13:(2025), pp. 82668-82679. [10.1109/access.2025.3568133]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1740109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact