We take into consideration generalization bounds for the problem of the estimation of the drift component for ergodic stochastic differential equations, when the estimator is a ReLU neural network and the estimation is non-parametric with respect to the statistical model. We show a practical way to enforce the theoretical estimation procedure, enabling inference on noisy and rough functional data. Results are shown for a simulated Itô-Taylor approximation of the sample paths.

Neural Drift Estimation for Ergodic Diffusions: Nonparametric Analysis and Numerical Exploration / Di Gregorio, Simone; Iafrate, Francesco. - (2025), pp. 159-168. ( IWFOS (International Workshop on Functional and Operatorial Statistics) Novara, Italy ) [10.1007/978-3-031-92383-8_20].

Neural Drift Estimation for Ergodic Diffusions: Nonparametric Analysis and Numerical Exploration

Di Gregorio, Simone
;
Iafrate, Francesco
2025

Abstract

We take into consideration generalization bounds for the problem of the estimation of the drift component for ergodic stochastic differential equations, when the estimator is a ReLU neural network and the estimation is non-parametric with respect to the statistical model. We show a practical way to enforce the theoretical estimation procedure, enabling inference on noisy and rough functional data. Results are shown for a simulated Itô-Taylor approximation of the sample paths.
2025
IWFOS (International Workshop on Functional and Operatorial Statistics)
neural networks; stochastic differential equations; non-asymptotic error-bounds; machine learning for time series; computational regularization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Neural Drift Estimation for Ergodic Diffusions: Nonparametric Analysis and Numerical Exploration / Di Gregorio, Simone; Iafrate, Francesco. - (2025), pp. 159-168. ( IWFOS (International Workshop on Functional and Operatorial Statistics) Novara, Italy ) [10.1007/978-3-031-92383-8_20].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1739903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact