This paper examines the essential role of intervehicle spacing on two-lane rural roads, highlighting its significance for traffic safety and management. Recent technological advancements have enabled the precise positioning of vehicles on highways through video recordings and image processing techniques. However, these systems are less applicable to rural roads due to the absence of extensive sensor networks. This study bridges this gap by proposing a simulation-based model to evaluate the probability density of intervehicle spacing under varying traffic conditions. The simulation model integrates macroscopic traffic flow theories with microscopic car following models, simulating intervehicle spacings over a considerable highway segment. Calibration and validation were conducted using data from a two-lane road in Northern Italy. The simulation results identify key characteristics of spacing distribution, including positive skewness (i.e., a longer tail toward higher values), high kurtosis (a peaked distribution with frequent extreme values), non-zero minimum values, and autocorrelation at high traffic densities (indicative of platooning behavior). The Pearson type III distribution was determined to be the most suitable fit for the experimental data. Thus, future research should focus on parameter estimation for the Pearson type III distribution to further understand intervehicle spacing under varying traffic conditions and to expand applications to various road types and traffic scenarios.
Modeling Intervehicle Spacing for Safe and Sustainable Operations on Two-Lane Roads / Pompigna, Andrea; Cantisani, Giuseppe; Mauro, Raffaele; Del Serrone, Giulia. - In: SUSTAINABILITY. - ISSN 2071-1050. - 17:8(2025). [10.3390/su17083602]
Modeling Intervehicle Spacing for Safe and Sustainable Operations on Two-Lane Roads
Pompigna, Andrea;Cantisani, Giuseppe
;Mauro, Raffaele;Del Serrone, Giulia
2025
Abstract
This paper examines the essential role of intervehicle spacing on two-lane rural roads, highlighting its significance for traffic safety and management. Recent technological advancements have enabled the precise positioning of vehicles on highways through video recordings and image processing techniques. However, these systems are less applicable to rural roads due to the absence of extensive sensor networks. This study bridges this gap by proposing a simulation-based model to evaluate the probability density of intervehicle spacing under varying traffic conditions. The simulation model integrates macroscopic traffic flow theories with microscopic car following models, simulating intervehicle spacings over a considerable highway segment. Calibration and validation were conducted using data from a two-lane road in Northern Italy. The simulation results identify key characteristics of spacing distribution, including positive skewness (i.e., a longer tail toward higher values), high kurtosis (a peaked distribution with frequent extreme values), non-zero minimum values, and autocorrelation at high traffic densities (indicative of platooning behavior). The Pearson type III distribution was determined to be the most suitable fit for the experimental data. Thus, future research should focus on parameter estimation for the Pearson type III distribution to further understand intervehicle spacing under varying traffic conditions and to expand applications to various road types and traffic scenarios.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pompigna_Modeling-intervehicle-spacing_2025.pdf
accesso aperto
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
5.34 MB
Formato
Adobe PDF
|
5.34 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


