We study existence of positive weak solutions for stationary systems weakly related to the logarithmic Keller–Segel model for chemotaxis. The simplest case is the Dirichlet problem for (Formula presented). We prove existence results under conditions on A > 0 and λ > 0; for instance, we prove existence of finite energy solutions u if 0 < A <1/2.
EXISTENCE OF WEAK SOLUTIONS FOR SOME ELLIPTIC SYSTEMS / Boccardo, L.; Orsina, L.. - In: PURE AND APPLIED ANALYSIS. - ISSN 2578-5893. - 4:3(2022), pp. 517-534. [10.2140/paa.2022.4.517]
EXISTENCE OF WEAK SOLUTIONS FOR SOME ELLIPTIC SYSTEMS
Boccardo L.;Orsina L.
2022
Abstract
We study existence of positive weak solutions for stationary systems weakly related to the logarithmic Keller–Segel model for chemotaxis. The simplest case is the Dirichlet problem for (Formula presented). We prove existence results under conditions on A > 0 and λ > 0; for instance, we prove existence of finite energy solutions u if 0 < A <1/2.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Boccardo_Existence_2022.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
358.69 kB
Formato
Adobe PDF
|
358.69 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


