We study existence of positive weak solutions for stationary systems weakly related to the logarithmic Keller–Segel model for chemotaxis. The simplest case is the Dirichlet problem for (Formula presented). We prove existence results under conditions on A > 0 and λ > 0; for instance, we prove existence of finite energy solutions u if 0 < A <1/2.

EXISTENCE OF WEAK SOLUTIONS FOR SOME ELLIPTIC SYSTEMS / Boccardo, L.; Orsina, L.. - In: PURE AND APPLIED ANALYSIS. - ISSN 2578-5893. - 4:3(2022), pp. 517-534. [10.2140/paa.2022.4.517]

EXISTENCE OF WEAK SOLUTIONS FOR SOME ELLIPTIC SYSTEMS

Boccardo L.;Orsina L.
2022

Abstract

We study existence of positive weak solutions for stationary systems weakly related to the logarithmic Keller–Segel model for chemotaxis. The simplest case is the Dirichlet problem for (Formula presented). We prove existence results under conditions on A > 0 and λ > 0; for instance, we prove existence of finite energy solutions u if 0 < A <1/2.
2022
elliptic systems; Keller–Segel model; nonlinear elliptic equations
01 Pubblicazione su rivista::01a Articolo in rivista
EXISTENCE OF WEAK SOLUTIONS FOR SOME ELLIPTIC SYSTEMS / Boccardo, L.; Orsina, L.. - In: PURE AND APPLIED ANALYSIS. - ISSN 2578-5893. - 4:3(2022), pp. 517-534. [10.2140/paa.2022.4.517]
File allegati a questo prodotto
File Dimensione Formato  
Boccardo_Existence_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 358.69 kB
Formato Adobe PDF
358.69 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1739264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact