We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form A E(x)∇u + div(u E(x)), with A > 0 and E in (Lr (Ω))N . The result is obtained using a nonlinear function of u as test function, in order to “cancel” this term.
Dirichlet problems with skew-symmetric drift terms / Boccardo, L.; Casado-Diaz, J.; Orsina, L.. - In: COMPTES RENDUS MATHÉMATIQUE. - ISSN 1631-073X. - 362:(2024), pp. 301-306. [10.5802/crmath.564]
Dirichlet problems with skew-symmetric drift terms
Boccardo L.;Orsina L.
2024
Abstract
We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form A E(x)∇u + div(u E(x)), with A > 0 and E in (Lr (Ω))N . The result is obtained using a nonlinear function of u as test function, in order to “cancel” this term.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Boccardo_Dirichlet-problems_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
388.21 kB
Formato
Adobe PDF
|
388.21 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


