We consider the nonlinear elliptic system (Formula presented.) where Ω is a bounded, open subset of (Formula presented.), (Formula presented.); (Formula presented.) is a coercive, symmetric matrix with (Formula presented.) coefficients; (Formula presented.) and (Formula presented.) belong to some Lebesgue space, and (Formula presented.) is a continuous function such that (Formula presented.) Using a duality technique, we prove existence of at least a weak solution (Formula presented.). Moreover, if N=3 or N=4, we prove under stronger assumptions on (Formula presented.) and (Formula presented.) that the solution u belongs to (Formula presented.).

A nonlinear elliptic system with a transport term and singular data / Boccardo, L.; Orsina, L.; Tello, J. I.. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - (2024). [10.1080/00036811.2024.2325450]

A nonlinear elliptic system with a transport term and singular data

Boccardo L.;Orsina L.;
2024

Abstract

We consider the nonlinear elliptic system (Formula presented.) where Ω is a bounded, open subset of (Formula presented.), (Formula presented.); (Formula presented.) is a coercive, symmetric matrix with (Formula presented.) coefficients; (Formula presented.) and (Formula presented.) belong to some Lebesgue space, and (Formula presented.) is a continuous function such that (Formula presented.) Using a duality technique, we prove existence of at least a weak solution (Formula presented.). Moreover, if N=3 or N=4, we prove under stronger assumptions on (Formula presented.) and (Formula presented.) that the solution u belongs to (Formula presented.).
2024
chemotaxis; elliptic systems; finite energy solutions; regularity of solutions; weak data
01 Pubblicazione su rivista::01a Articolo in rivista
A nonlinear elliptic system with a transport term and singular data / Boccardo, L.; Orsina, L.; Tello, J. I.. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - (2024). [10.1080/00036811.2024.2325450]
File allegati a questo prodotto
File Dimensione Formato  
Boccardo_A-nonlinear-elliptic-system_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1739251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact