Let V denote an r-dimensional Fq^n-vector space. Let U and W be Fq-subspaces of V and let L_U and L_W be the projective points of PG (V, q^n) defined by U and W respectively. We address the problem of when L_W = L_U under the hypothesis that U and W have maximum dimension, i.e., dimFq W = dimFq U=rn - n, and we give a complete characterization for r = 2.

On subspaces defining linear sets of maximum rank / Pepe, V.. - In: JOURNAL OF ALGEBRA. - ISSN 1090-266X. - 676:(2025), pp. 378-407. [10.1016/j.jalgebra.2025.03.039]

On subspaces defining linear sets of maximum rank

Pepe V.
2025

Abstract

Let V denote an r-dimensional Fq^n-vector space. Let U and W be Fq-subspaces of V and let L_U and L_W be the projective points of PG (V, q^n) defined by U and W respectively. We address the problem of when L_W = L_U under the hypothesis that U and W have maximum dimension, i.e., dimFq W = dimFq U=rn - n, and we give a complete characterization for r = 2.
2025
Finite geometry; Finite fields; Linear sets; Grassmann embedding; Dickson matrix
01 Pubblicazione su rivista::01a Articolo in rivista
On subspaces defining linear sets of maximum rank / Pepe, V.. - In: JOURNAL OF ALGEBRA. - ISSN 1090-266X. - 676:(2025), pp. 378-407. [10.1016/j.jalgebra.2025.03.039]
File allegati a questo prodotto
File Dimensione Formato  
Pepe_subspaces_2025.pdf

solo gestori archivio

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 371.41 kB
Formato Adobe PDF
371.41 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1738996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact