Let V denote an r-dimensional Fq^n-vector space. Let U and W be Fq-subspaces of V and let L_U and L_W be the projective points of PG (V, q^n) defined by U and W respectively. We address the problem of when L_W = L_U under the hypothesis that U and W have maximum dimension, i.e., dimFq W = dimFq U=rn - n, and we give a complete characterization for r = 2.
On subspaces defining linear sets of maximum rank / Pepe, V.. - In: JOURNAL OF ALGEBRA. - ISSN 1090-266X. - 676:(2025), pp. 378-407. [10.1016/j.jalgebra.2025.03.039]
On subspaces defining linear sets of maximum rank
Pepe V.
2025
Abstract
Let V denote an r-dimensional Fq^n-vector space. Let U and W be Fq-subspaces of V and let L_U and L_W be the projective points of PG (V, q^n) defined by U and W respectively. We address the problem of when L_W = L_U under the hypothesis that U and W have maximum dimension, i.e., dimFq W = dimFq U=rn - n, and we give a complete characterization for r = 2.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Pepe_subspaces_2025.pdf
solo gestori archivio
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
371.41 kB
Formato
Adobe PDF
|
371.41 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


