Efficient waste management remains critical to achieving sustainable urban development, addressing challenges related to resource conservation, environmental preservation, and carbon emissions reduction. This review synthesizes advancements in waste management technologies, focusing on three transformative areas: optimization techniques, the integration of electric vehicles (EVs), and the adoption of smart technologies. Optimization methodologies, such as vehicle routing problems (VRPs) and dynamic scheduling, have demonstrated significant improvements in operational efficiency and emissions reduction. The integration of EVs has emerged as a sustainable alternative to traditional diesel fleets, reducing greenhouse gas emissions while addressing infrastructure and economic challenges. Additionally, the application of smart technologies, including Internet of Things (IoT), artificial intelligence (AI), and the Geographic Information System (GIS), has revolutionized waste monitoring and decision-making, enhancing the alignment of waste systems with circular economy principles. Despite these advancements, barriers such as high costs, technological complexities, and geographic disparities persist, necessitating scalable, inclusive solutions. This review highlights the need for interdisciplinary research, policy standardization, and global collaboration to overcome these challenges. The findings provide actionable insights for policymakers, municipalities, and businesses, enabling data-driven decision-making, optimized waste collection, and enhanced sustainability strategies in modern waste management systems.
Moving towards electrified waste management fleet: state of the art and future trends / Bragatto, Tommaso; Ghoreishi, Mohammad; Santori, Francesca; Geri, Alberto; Maccioni, Marco; Jabari, Mostafa; Almughary, Huda M.. - In: ENERGIES. - ISSN 1996-1073. - 18:8(2025), pp. 1-32. [10.3390/en18081992]
Moving towards electrified waste management fleet: state of the art and future trends
Tommaso Bragatto;Mohammad Ghoreishi;Alberto Geri;Marco Maccioni;Mostafa Jabari;Huda M. Almughary
2025
Abstract
Efficient waste management remains critical to achieving sustainable urban development, addressing challenges related to resource conservation, environmental preservation, and carbon emissions reduction. This review synthesizes advancements in waste management technologies, focusing on three transformative areas: optimization techniques, the integration of electric vehicles (EVs), and the adoption of smart technologies. Optimization methodologies, such as vehicle routing problems (VRPs) and dynamic scheduling, have demonstrated significant improvements in operational efficiency and emissions reduction. The integration of EVs has emerged as a sustainable alternative to traditional diesel fleets, reducing greenhouse gas emissions while addressing infrastructure and economic challenges. Additionally, the application of smart technologies, including Internet of Things (IoT), artificial intelligence (AI), and the Geographic Information System (GIS), has revolutionized waste monitoring and decision-making, enhancing the alignment of waste systems with circular economy principles. Despite these advancements, barriers such as high costs, technological complexities, and geographic disparities persist, necessitating scalable, inclusive solutions. This review highlights the need for interdisciplinary research, policy standardization, and global collaboration to overcome these challenges. The findings provide actionable insights for policymakers, municipalities, and businesses, enabling data-driven decision-making, optimized waste collection, and enhanced sustainability strategies in modern waste management systems.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bragatto_Moving Towards Electrified_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.64 MB
Formato
Adobe PDF
|
3.64 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


