We consider the critical points of Steklov eigenfunctions on a compact, smooth n-dimensional Riemannian manifold M with boundary ∂M. For generic metrics on M we establish an identity which relates the sum of the indexes of a Steklov eigenfunction, the sum of the indexes of its restriction to ∂M, and the Euler characteristic of M. In dimension 2 this identity gives a precise count of the interior critical points of a Steklov eigenfunction in terms of the Euler characteristic of M and of the number of sign changes of u on ∂M. In the case of the second Steklov eigenfunction on a genus 0 surface, the identity holds for any metric. As a by-product of the main result, we show that for generic metrics on M Steklov eigenfunctions are Morse functions in M.
On the critical points of Steklov eigenfunctions / Battaglia, L.; Pistoia, A.; Provenzano, L.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2025). [10.1007/s10231-025-01551-6]
On the critical points of Steklov eigenfunctions
Pistoia A.;Provenzano L.
2025
Abstract
We consider the critical points of Steklov eigenfunctions on a compact, smooth n-dimensional Riemannian manifold M with boundary ∂M. For generic metrics on M we establish an identity which relates the sum of the indexes of a Steklov eigenfunction, the sum of the indexes of its restriction to ∂M, and the Euler characteristic of M. In dimension 2 this identity gives a precise count of the interior critical points of a Steklov eigenfunction in terms of the Euler characteristic of M and of the number of sign changes of u on ∂M. In the case of the second Steklov eigenfunction on a genus 0 surface, the identity holds for any metric. As a by-product of the main result, we show that for generic metrics on M Steklov eigenfunctions are Morse functions in M.| File | Dimensione | Formato | |
|---|---|---|---|
|
Battaglia_criticalpoints_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
352.59 kB
Formato
Adobe PDF
|
352.59 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


