We prove well-posedness of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, where the singular part of the initial data is a finite superposition of Dirac masses and the flux is a continuous function with possible linear growth at infinity. The uniqueness class consists of signed Radon measure-valued entropy solutions, called admissible, whose regular and singular parts satisfy so-called compatibility conditions and suitable continuity requirements with respect to time.

Measure-valued solutions of scalar hyperbolic conservation laws, Part 2: Uniqueness / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 254:(2025), pp. 1-24. [10.1016/j.na.2024.113740]

Measure-valued solutions of scalar hyperbolic conservation laws, Part 2: Uniqueness

Terracina, Andrea
;
Tesei, Alberto
2025

Abstract

We prove well-posedness of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, where the singular part of the initial data is a finite superposition of Dirac masses and the flux is a continuous function with possible linear growth at infinity. The uniqueness class consists of signed Radon measure-valued entropy solutions, called admissible, whose regular and singular parts satisfy so-called compatibility conditions and suitable continuity requirements with respect to time.
2025
First order hyperbolic conservation lawsRadon measure-valued entropy solutionsContinuity propertiesCompatibility conditions
01 Pubblicazione su rivista::01a Articolo in rivista
Measure-valued solutions of scalar hyperbolic conservation laws, Part 2: Uniqueness / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 254:(2025), pp. 1-24. [10.1016/j.na.2024.113740]
File allegati a questo prodotto
File Dimensione Formato  
Bertsch_Measure-valued_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1738108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact