There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.
Para-Markov chains and related non-local equations / Facciaroni, Lorenzo; Ricciuti, Costantino; Scalas, Enrico; Toaldo, Bruno. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1314-2224. - (2025), pp. 1-23. [10.1007/s13540-025-00390-9]
Para-Markov chains and related non-local equations
Lorenzo Facciaroni;Costantino Ricciuti;Enrico Scalas
;Bruno Toaldo
2025
Abstract
There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.| File | Dimensione | Formato | |
|---|---|---|---|
|
Facciaroni_para-Markov-chains_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
593.13 kB
Formato
Adobe PDF
|
593.13 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


