There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.

Para-Markov chains and related non-local equations / Facciaroni, Lorenzo; Ricciuti, Costantino; Scalas, Enrico; Toaldo, Bruno. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1314-2224. - (2025), pp. 1-23. [10.1007/s13540-025-00390-9]

Para-Markov chains and related non-local equations

Lorenzo Facciaroni;Costantino Ricciuti;Enrico Scalas
;
Bruno Toaldo
2025

Abstract

There is a well-established theory that links semi-Markov chains having Mittag-Leffler waiting times to time-fractional equations. We here go beyond the semi-Markov setting, by defining some non-Markovian chains whose waiting times, although marginally Mittag-Leffler, are assumed to be stochastically dependent. This creates a long memory tail in the evolution, unlike what happens for semi-Markov processes. As a special case of these chains, we study a particular counting process which extends the well-known fractional Poisson process, the last one having independent, Mittag-Leffler waiting times.
2025
fractional calculus operators; function of matrices; non-markovian dynamics; Schur lifetimes; semi-Markov chains
01 Pubblicazione su rivista::01a Articolo in rivista
Para-Markov chains and related non-local equations / Facciaroni, Lorenzo; Ricciuti, Costantino; Scalas, Enrico; Toaldo, Bruno. - In: FRACTIONAL CALCULUS & APPLIED ANALYSIS. - ISSN 1314-2224. - (2025), pp. 1-23. [10.1007/s13540-025-00390-9]
File allegati a questo prodotto
File Dimensione Formato  
Facciaroni_para-Markov-chains_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 593.13 kB
Formato Adobe PDF
593.13 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1737583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact