In this work, we study the deterministic Cucker–Smale model with topological interaction. Focusing on the solutions of the corresponding Liouville equation, we show that propagation of chaos holds. Moreover, considering monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by a pressureless Euler-type system.
PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS / Benedetto, D.; Paul, T.; Rossi, S.. - In: KINETIC AND RELATED MODELS. - ISSN 1937-5093. - 18:1(2025), pp. 19-34. [10.3934/krm.2024010]
PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS
Benedetto D.;Paul T.;
2025
Abstract
In this work, we study the deterministic Cucker–Smale model with topological interaction. Focusing on the solutions of the corresponding Liouville equation, we show that propagation of chaos holds. Moreover, considering monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by a pressureless Euler-type system.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Benedetto_postprint_Propagation_2025.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
366.22 kB
Formato
Adobe PDF
|
366.22 kB | Adobe PDF | |
|
Benedetto_Propagation_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
502.69 kB
Formato
Adobe PDF
|
502.69 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


