In this work, we study the deterministic Cucker–Smale model with topological interaction. Focusing on the solutions of the corresponding Liouville equation, we show that propagation of chaos holds. Moreover, considering monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by a pressureless Euler-type system.

PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS / Benedetto, D.; Paul, T.; Rossi, S.. - In: KINETIC AND RELATED MODELS. - ISSN 1937-5093. - 18:1(2025), pp. 19-34. [10.3934/krm.2024010]

PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS

Benedetto D.;Paul T.;
2025

Abstract

In this work, we study the deterministic Cucker–Smale model with topological interaction. Focusing on the solutions of the corresponding Liouville equation, we show that propagation of chaos holds. Moreover, considering monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by a pressureless Euler-type system.
2025
Cucker–Smale model; monokinetic solutions; pressureless Euler equation; propagation of chaos; topological interaction
01 Pubblicazione su rivista::01a Articolo in rivista
PROPAGATION OF CHAOS AND HYDRODYNAMIC DESCRIPTION FOR TOPOLOGICAL MODELS / Benedetto, D.; Paul, T.; Rossi, S.. - In: KINETIC AND RELATED MODELS. - ISSN 1937-5093. - 18:1(2025), pp. 19-34. [10.3934/krm.2024010]
File allegati a questo prodotto
File Dimensione Formato  
Benedetto_postprint_Propagation_2025.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 366.22 kB
Formato Adobe PDF
366.22 kB Adobe PDF
Benedetto_Propagation_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 502.69 kB
Formato Adobe PDF
502.69 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1737500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact