Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion.
Behaviour-dependent predation risk in swimming zooplankters / M., Uttieri; Cianelli, Daniela; Zambianchi, Enrico. - In: ZOOLOGICAL STUDIES. - ISSN 1021-5506. - 52:(2013), pp. 32-43. [10.1186/1810-522X-52-32]
Behaviour-dependent predation risk in swimming zooplankters
ZAMBIANCHI, Enrico
2013
Abstract
Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


