Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the progressive degeneration of motor neurons. One of the key pathogenic factors implicated in ALS is TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the TARDBP gene. Under normal physiological conditions, TDP-43 predominantly resides in the nucleus, where it plays a critical role in regulating gene expression, alternative splicing, RNA transport, and stability. In ALS, TDP-43 undergoes pathological mislocalization from the nucleus to the cytoplasm, disrupting its normal function and contributing to disease progression. The nuclear loss of TDP-43 leads to widespread dysregulation of RNA metabolism. Moreover, mislocalized TDP-43 aggregates in the cytoplasm, acquires toxic properties that sequester essential RNA molecules and proteins. Importantly, deviations in TDP-43 levels, whether excessive or reduced, can lead to cellular dysfunction, and contribute to disease progression, highlighting the delicate balance required for neuronal health. Emerging evidence suggests that epigenetic mechanisms may play a crucial role in regulating TARDBP expression and, consequently, TDP-43 cellular levels. Epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNAs are increasingly recognized as modulators of gene expression and cellular function in neurodegenerative diseases, including ALS. Dysregulation of these processes could contribute to aberrant TARDBP expression, amplifying TDP-43-associated pathologies. This review explores and summarizes the recent findings on how specific epigenetic modifications influence TDP-43 expression and discusses their possible implications for disease progression.
Epigenetic regulation of TDP-43: potential implications for amyotrophic lateral sclerosis / Mengistu, D Y; Terribili, M; Pellacani, C; Ciapponi, L; Marzullo, M. - In: FRONTIERS IN MOLECULAR MEDICINE. - ISSN 2674-0095. - 5:13(2025). [10.3389/fmmed.2025.1530719]
Epigenetic regulation of TDP-43: potential implications for amyotrophic lateral sclerosis
Mengistu, D YPrimo
Writing – Review & Editing
;Terribili, MSecondo
Writing – Review & Editing
;Pellacani, CWriting – Review & Editing
;Ciapponi, L
Penultimo
Writing – Review & Editing
;Marzullo, M
Ultimo
Writing – Original Draft Preparation
2025
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the progressive degeneration of motor neurons. One of the key pathogenic factors implicated in ALS is TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the TARDBP gene. Under normal physiological conditions, TDP-43 predominantly resides in the nucleus, where it plays a critical role in regulating gene expression, alternative splicing, RNA transport, and stability. In ALS, TDP-43 undergoes pathological mislocalization from the nucleus to the cytoplasm, disrupting its normal function and contributing to disease progression. The nuclear loss of TDP-43 leads to widespread dysregulation of RNA metabolism. Moreover, mislocalized TDP-43 aggregates in the cytoplasm, acquires toxic properties that sequester essential RNA molecules and proteins. Importantly, deviations in TDP-43 levels, whether excessive or reduced, can lead to cellular dysfunction, and contribute to disease progression, highlighting the delicate balance required for neuronal health. Emerging evidence suggests that epigenetic mechanisms may play a crucial role in regulating TARDBP expression and, consequently, TDP-43 cellular levels. Epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNAs are increasingly recognized as modulators of gene expression and cellular function in neurodegenerative diseases, including ALS. Dysregulation of these processes could contribute to aberrant TARDBP expression, amplifying TDP-43-associated pathologies. This review explores and summarizes the recent findings on how specific epigenetic modifications influence TDP-43 expression and discusses their possible implications for disease progression.| File | Dimensione | Formato | |
|---|---|---|---|
|
Mengistu_Epigenetic_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


