Triple oxygen isotopes of Cenozoic intrusive rocks emplaced along the Ross Sea coastline in Antarctica, reveal that meteoric-hydrothermal waters imprinted their stable isotope composition on mineral phases, leaving a clear record of oxygen and hydrogen isotope variations during the establishment of the polar cap. Calculated O- and H-isotope compositions of meteoric waters vary from −9 ± 2‰ and −92 ± 5‰ at 40 ± 0.6 Ma, to −30 and −234 ± 5‰ at 34 ± 1.9 Ma, and intersect the modern Global Meteoric Water Line. These isotopic variations likely depict the combined variations in temperature, humidity, and moisture source regions, resulting from rearrangement of oceanic currents and atmospheric cooling during the onset of continental ice cap. Here, we report a paleo-climatic proxy based on triple oxygen geochemistry of crystalline rocks that reveals changes in the hydrological cycle. We discuss the magnitude of temperature changes at high latitudes during the Eocene-Oligocene climatic transition.

A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation / Dallai, Luigi; Sharp, Zachary D.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - (2024).

A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation

Luigi Dallai
;
2024

Abstract

Triple oxygen isotopes of Cenozoic intrusive rocks emplaced along the Ross Sea coastline in Antarctica, reveal that meteoric-hydrothermal waters imprinted their stable isotope composition on mineral phases, leaving a clear record of oxygen and hydrogen isotope variations during the establishment of the polar cap. Calculated O- and H-isotope compositions of meteoric waters vary from −9 ± 2‰ and −92 ± 5‰ at 40 ± 0.6 Ma, to −30 and −234 ± 5‰ at 34 ± 1.9 Ma, and intersect the modern Global Meteoric Water Line. These isotopic variations likely depict the combined variations in temperature, humidity, and moisture source regions, resulting from rearrangement of oceanic currents and atmospheric cooling during the onset of continental ice cap. Here, we report a paleo-climatic proxy based on triple oxygen geochemistry of crystalline rocks that reveals changes in the hydrological cycle. We discuss the magnitude of temperature changes at high latitudes during the Eocene-Oligocene climatic transition.
2024
triple oxygen; isotopes; glaciation
01 Pubblicazione su rivista::01a Articolo in rivista
A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation / Dallai, Luigi; Sharp, Zachary D.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - (2024).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact