The exploration of employment trajectories over time may be significantly biased due to measurement errors in the data used for the analysis. This paper addresses this issue by employing a mixture hidden Markov model (MHMM) that detects and corrects for measurement errors. Specifically, we use an MHMM that includes two indicators for employment status, derived from linked data from the Italian Labour Force Survey and Administrative Data for the period 2017-2021

Does measurement error bias employment pathways? The case of Italy / Pavlopoulos, Dimitris; Varriale, Roberta; Loriga, Silvia. - In: RIVISTA ITALIANA DI ECONOMIA, DEMOGRAFIA E STATISTICA. - ISSN 0035-6832. - LXXIX n.1:(2025), pp. 211-222.

Does measurement error bias employment pathways? The case of Italy

Roberta Varriale;Silvia Loriga
2025

Abstract

The exploration of employment trajectories over time may be significantly biased due to measurement errors in the data used for the analysis. This paper addresses this issue by employing a mixture hidden Markov model (MHMM) that detects and corrects for measurement errors. Specifically, we use an MHMM that includes two indicators for employment status, derived from linked data from the Italian Labour Force Survey and Administrative Data for the period 2017-2021
2025
mixture hidden Markov model; measurement error; employment trajectories; labour force survey; administrative data
01 Pubblicazione su rivista::01a Articolo in rivista
Does measurement error bias employment pathways? The case of Italy / Pavlopoulos, Dimitris; Varriale, Roberta; Loriga, Silvia. - In: RIVISTA ITALIANA DI ECONOMIA, DEMOGRAFIA E STATISTICA. - ISSN 0035-6832. - LXXIX n.1:(2025), pp. 211-222.
File allegati a questo prodotto
File Dimensione Formato  
Pavlopoulos_measurement-error_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 834.75 kB
Formato Adobe PDF
834.75 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact