This article introduces a novel methodology to model the hierarchical dependence structure of manifest variables (MVs). This is done by reconstructing their correlation matrix considering a hierarchy of latent factors which forms an ultrametric correlation matrix. The proposed ultrametric factor analysis model will be shown to obtain reliable, unidimensional, and unique hierarchical factors. This approach addresses the limitations of traditional factor analysis methods that often oversimplify the multidimensional and complex relationships among MVs. The article provides an in-depth mathematical description of the proposed model, as well as an algorithm for parameter estimation. An extensive simulation study with generated samples validates the proposal across twelve different scenarios. Finally, we demonstrate the potential of the proposed model using a real data set that is a benchmark in psychological research.

Ultrametric factor analysis for building hierarchies of reliable and unidimensional latent concepts / Bottazzi Schenone, Mariaelena; Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - In: PSYCHOMETRIKA. - ISSN 1860-0980. - (2025), pp. 1-20. [10.1017/psy.2025.6]

Ultrametric factor analysis for building hierarchies of reliable and unidimensional latent concepts

Mariaelena Bottazzi Schenone
;
Carlo Cavicchia;Maurizio Vichi;Giorgia Zaccaria
2025

Abstract

This article introduces a novel methodology to model the hierarchical dependence structure of manifest variables (MVs). This is done by reconstructing their correlation matrix considering a hierarchy of latent factors which forms an ultrametric correlation matrix. The proposed ultrametric factor analysis model will be shown to obtain reliable, unidimensional, and unique hierarchical factors. This approach addresses the limitations of traditional factor analysis methods that often oversimplify the multidimensional and complex relationships among MVs. The article provides an in-depth mathematical description of the proposed model, as well as an algorithm for parameter estimation. An extensive simulation study with generated samples validates the proposal across twelve different scenarios. Finally, we demonstrate the potential of the proposed model using a real data set that is a benchmark in psychological research.
2025
hierarchical factor analysis; higher-order models; latent variables (LVs); ultrametric correlation matrix
01 Pubblicazione su rivista::01a Articolo in rivista
Ultrametric factor analysis for building hierarchies of reliable and unidimensional latent concepts / Bottazzi Schenone, Mariaelena; Cavicchia, Carlo; Vichi, Maurizio; Zaccaria, Giorgia. - In: PSYCHOMETRIKA. - ISSN 1860-0980. - (2025), pp. 1-20. [10.1017/psy.2025.6]
File allegati a questo prodotto
File Dimensione Formato  
Bottazzi_ultrametric-factor-analysis_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact