Objective. Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features. Approach. Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC). Results. The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy−1 outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy−1 by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector’s performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1) μm and (405 ± 5) μm, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials. Significance. The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance, in-vivo dosimetry and in-line beam monitoring for MRT and FLASH therapy.

Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors / Large, M. J.; Kanxheri, K.; Posar, J.; Aziz, S.; Bashiri, A.; Calcagnile, L.; Calvo, D.; Caputo, D.; Caricato, A. P.; Catalano, R.; Cirio, R.; Cirrone, G. A. P.; Croci, T.; Cuttone, G.; De Cesare, G.; De Remigis, P.; Dunand, S.; Fabi, M.; Frontini, L.; Grimani, C.; Guarrera, M.; Ionica, M.; Lenta, F.; Liberali, V.; Lovecchio, N.; Martino, M.; Maruccio, G.; Mazza, G.; Menichelli, M.; Monteduro, A. G.; Morozzi, A.; Moscatelli, F.; Nascetti, A.; Pallotta, S.; Passeri, D.; Pedio, M.; Petringa, G.; Peverini, F.; Placidi, P.; Quarta, G.; Rizzato, S.; Sabbatini, F.; Servoli, L.; Stabile, A.; Thomet, J. E.; Tosti, L.; Villani, M.; Wheadon, R. J.; Wyrsch, N.; Zema, N.; Petasecca, M.; Talamonti, C.. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - 69:15(2024). [10.1088/1361-6560/ad64b5]

Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors

Caputo D.;De Cesare G.;Lovecchio N.;Nascetti A.;
2024

Abstract

Objective. Detectors that can provide accurate dosimetry for microbeam radiation therapy (MRT) must possess intrinsic radiation hardness, a high dynamic range, and a micron-scale spatial resolution. In this work we characterize hydrogenated amorphous silicon detectors for MRT dosimetry, presenting a novel combination of flexible, ultra-thin and radiation-hard features. Approach. Two detectors are explored: an n-type/intrinsic/p-type planar diode (NIP) and an NIP with an additional charge selective layer (NIP + CSC). Results. The sensitivity of the NIP + CSC detector was greater than the NIP detector for all measurement conditions. At 1 V and 0 kGy under the 3T Cu-Cu synchrotron broadbeam, the NIP + CSC detector sensitivity of (7.76 ± 0.01) pC cGy−1 outperformed the NIP detector sensitivity of (3.55 ± 0.23) pC cGy−1 by 219%. The energy dependence of both detectors matches closely to the attenuation coefficient ratio of silicon against water. Radiation damage measurements of both detectors out to 40 kGy revealed a higher radiation tolerance in the NIP detector compared to the NIP + CSC (17.2% and 33.5% degradations, respectively). Percentage depth dose profiles matched the PTW microDiamond detector’s performance to within ±6% for all beam filtrations except in 3T Al-Al due to energy dependence. The 3T Cu-Cu microbeam field profile was reconstructed and returned microbeam width and peak-to-peak values of (51 ± 1) μm and (405 ± 5) μm, respectively. The peak-to-valley dose ratio was measured as a function of depth and agrees within error to the values obtained with the PTW microDiamond. X-ray beam induced charge mapping of the detector revealed minimal dose perturbations from extra-cameral materials. Significance. The detectors are comparable to commercially available dosimeters for quality assurance in MRT. With added benefits of being micron-sized and possessing a flexible water-equivalent substrate, these detectors are attractive candidates for quality assurance, in-vivo dosimetry and in-line beam monitoring for MRT and FLASH therapy.
2024
flash photon therapy; flexible dosimetry; high dose-rate dosimetry; hydrogenated amorphous silicon; microbeam radiation therapy
01 Pubblicazione su rivista::01a Articolo in rivista
Dosimetry of microbeam radiotherapy by flexible hydrogenated amorphous silicon detectors / Large, M. J.; Kanxheri, K.; Posar, J.; Aziz, S.; Bashiri, A.; Calcagnile, L.; Calvo, D.; Caputo, D.; Caricato, A. P.; Catalano, R.; Cirio, R.; Cirrone, G. A. P.; Croci, T.; Cuttone, G.; De Cesare, G.; De Remigis, P.; Dunand, S.; Fabi, M.; Frontini, L.; Grimani, C.; Guarrera, M.; Ionica, M.; Lenta, F.; Liberali, V.; Lovecchio, N.; Martino, M.; Maruccio, G.; Mazza, G.; Menichelli, M.; Monteduro, A. G.; Morozzi, A.; Moscatelli, F.; Nascetti, A.; Pallotta, S.; Passeri, D.; Pedio, M.; Petringa, G.; Peverini, F.; Placidi, P.; Quarta, G.; Rizzato, S.; Sabbatini, F.; Servoli, L.; Stabile, A.; Thomet, J. E.; Tosti, L.; Villani, M.; Wheadon, R. J.; Wyrsch, N.; Zema, N.; Petasecca, M.; Talamonti, C.. - In: PHYSICS IN MEDICINE AND BIOLOGY. - ISSN 0031-9155. - 69:15(2024). [10.1088/1361-6560/ad64b5]
File allegati a questo prodotto
File Dimensione Formato  
Large_Dosimetry_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact