In this study, we approach the analysis of a degenerate nonlinear functional in one dimension, accommodating a degenerate weight w. Our investigation focuses on establishing an explicit relaxation formula for a functional exhibiting p-growth for 1< p<+\infty. We adopt the approach developed in the paper V. De Cicco, F. Serra Cassano: Relaxation and optimal finiteness domain for degenerate quadratic functionals - one dimensional case, ESAIM: Control, Optim. Calc. Var. 30 (2024), no. 31. where some assumptions like doubling or Muckenhoupt conditions are dropped. Our main tools consist of proving the validity of a weighted Poincaré inequality involving an auxiliary weight.
Relaxation for degenerate nonlinear functionals in the onedimensional case / Chiado' Piat, Valeria; De Cicco, Virginia; Melchor Hernandez, Anderson. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:4(2025). [10.1007/s00030-025-01058-2]
Relaxation for degenerate nonlinear functionals in the onedimensional case
VALERIA CHIADO` PIAT;VIRGINIA DE CICCO;ANDERSON MELCHOR HERNANDEZ
2025
Abstract
In this study, we approach the analysis of a degenerate nonlinear functional in one dimension, accommodating a degenerate weight w. Our investigation focuses on establishing an explicit relaxation formula for a functional exhibiting p-growth for 1< p<+\infty. We adopt the approach developed in the paper V. De Cicco, F. Serra Cassano: Relaxation and optimal finiteness domain for degenerate quadratic functionals - one dimensional case, ESAIM: Control, Optim. Calc. Var. 30 (2024), no. 31. where some assumptions like doubling or Muckenhoupt conditions are dropped. Our main tools consist of proving the validity of a weighted Poincaré inequality involving an auxiliary weight.| File | Dimensione | Formato | |
|---|---|---|---|
|
Piat_Relaxation_2025.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
488.61 kB
Formato
Adobe PDF
|
488.61 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


