Deep learning, for sustainable applications or in cases of energy scarcity, requires using available, cost-effective, and energy-efficient accelerators together with efficient models. We explore using the Yolact model, for instance, segmentation, running on a low power consumption device (e.g., Intel Neural Computing Stick 2 (NCS2)), to detect and segment-specific objects. We have changed the Feature Pyramid Network (FPN) and pruning techniques to make the model usable for this application. The final model achieves a noticeable result in Frames Per Second (FPS) on the edge device while achieving a consistent mean Average Precision (mAP).

An Optimized and Accelerated Object Instance Segmentation Model for Low-Power Edge Devices / Bellani, Diego; Venanzi, Valerio; Andishmand, Shadi; Cinque, Luigi; Marini, Marco. - (2025), pp. 485-495. ( International Conference on Pattern Recognition Applications and Methods - ICPRAM Porto; Portugal ) [10.5220/0013200700003905].

An Optimized and Accelerated Object Instance Segmentation Model for Low-Power Edge Devices

Bellani, Diego;Venanzi, Valerio;Cinque, Luigi;Marini, Marco
2025

Abstract

Deep learning, for sustainable applications or in cases of energy scarcity, requires using available, cost-effective, and energy-efficient accelerators together with efficient models. We explore using the Yolact model, for instance, segmentation, running on a low power consumption device (e.g., Intel Neural Computing Stick 2 (NCS2)), to detect and segment-specific objects. We have changed the Feature Pyramid Network (FPN) and pruning techniques to make the model usable for this application. The final model achieves a noticeable result in Frames Per Second (FPS) on the edge device while achieving a consistent mean Average Precision (mAP).
2025
International Conference on Pattern Recognition Applications and Methods - ICPRAM
Deep Learning Efficiency, Edge Computing, Embed Devices, Object Detection, Pruning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
An Optimized and Accelerated Object Instance Segmentation Model for Low-Power Edge Devices / Bellani, Diego; Venanzi, Valerio; Andishmand, Shadi; Cinque, Luigi; Marini, Marco. - (2025), pp. 485-495. ( International Conference on Pattern Recognition Applications and Methods - ICPRAM Porto; Portugal ) [10.5220/0013200700003905].
File allegati a questo prodotto
File Dimensione Formato  
Bellani_An-optimized_postprint_2025.pdf

solo gestori archivio

Note: DOI: 10.5220/0013200700003905
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Contatta l'autore
Bellani_An-optimized_2025.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact