In this paper we study the asymptotic properties of the mathematical model of the double phosphorylation (dephosphorylation) enzymatic reaction, or futile cycle. Starting from the total quasi-steady state approximation (tQSSA), and applying singular perturbation techniques, we determine the inner and outer solutions and the corresponding matched expansions, up to the first order, in terms of an appropriate perturbation parameter (related to the kinetic constants and initial conditions of the model). Some numerical results are discussed.

Asymptotic expansions beyond the tQSSA for the double phosphorylation mechanism / Bersani, Alberto M.; Borri, Alessandro; Tomassetti, Giovanna; Vellucci, Pierluigi. - In: MATHEMATICS AND COMPUTERS IN SIMULATION. - ISSN 1872-7166. - 233:(2025), pp. 137-164. [10.1016/j.matcom.2025.01.019]

Asymptotic expansions beyond the tQSSA for the double phosphorylation mechanism

Alberto M. Bersani
;
Giovanna Tomassetti;Pierluigi Vellucci
2025

Abstract

In this paper we study the asymptotic properties of the mathematical model of the double phosphorylation (dephosphorylation) enzymatic reaction, or futile cycle. Starting from the total quasi-steady state approximation (tQSSA), and applying singular perturbation techniques, we determine the inner and outer solutions and the corresponding matched expansions, up to the first order, in terms of an appropriate perturbation parameter (related to the kinetic constants and initial conditions of the model). Some numerical results are discussed.
2025
double phosphorylation; Michaelis–Menten kinetics; singular perturbations; asymptotic expansions; total quasi-steady state approximation; center manifold
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotic expansions beyond the tQSSA for the double phosphorylation mechanism / Bersani, Alberto M.; Borri, Alessandro; Tomassetti, Giovanna; Vellucci, Pierluigi. - In: MATHEMATICS AND COMPUTERS IN SIMULATION. - ISSN 1872-7166. - 233:(2025), pp. 137-164. [10.1016/j.matcom.2025.01.019]
File allegati a questo prodotto
File Dimensione Formato  
Bersani_Asymptotic_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1735300
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact