Financial time series are often clustered considering conditional volatility, estimated from GARCH models that rely on daily squared returns. Realized mea- sures provide, however, a better estimation of the volatility. Consequently, clustering approaches based on realized volatility should be preferred. Assuming that real- ized volatility dynamics can be explained by different trading frequencies of market partecipants, we propose a new approach for fuzzy clustering of financial time series based on the Heterogenous Autoregressive Realized Volatility (HAR-RV) model. We perform an empirical analysis on the clustering structure of the U.S. stocks belonging to the Dow Jones Industrial Average (DJIA) index.

HAR-based realized volatility clustering / D’Urso, Pierpaolo; Mattera, Raffaele; Otranto, Edoardo; Scaffidi Domianello, Luca. - (2024), pp. 84-87. (Intervento presentato al convegno ICES 2024 - 2nd Italian Conference on Economic Statistics tenutosi a Firenze).

HAR-based realized volatility clustering

Pierpaolo D’Urso;Raffaele Mattera;Edoardo Otranto;
2024

Abstract

Financial time series are often clustered considering conditional volatility, estimated from GARCH models that rely on daily squared returns. Realized mea- sures provide, however, a better estimation of the volatility. Consequently, clustering approaches based on realized volatility should be preferred. Assuming that real- ized volatility dynamics can be explained by different trading frequencies of market partecipants, we propose a new approach for fuzzy clustering of financial time series based on the Heterogenous Autoregressive Realized Volatility (HAR-RV) model. We perform an empirical analysis on the clustering structure of the U.S. stocks belonging to the Dow Jones Industrial Average (DJIA) index.
2024
ICES 2024 - 2nd Italian Conference on Economic Statistics
unsupervised learning; high frequency data; realized volatilty; financial time series clustering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
HAR-based realized volatility clustering / D’Urso, Pierpaolo; Mattera, Raffaele; Otranto, Edoardo; Scaffidi Domianello, Luca. - (2024), pp. 84-87. (Intervento presentato al convegno ICES 2024 - 2nd Italian Conference on Economic Statistics tenutosi a Firenze).
File allegati a questo prodotto
File Dimensione Formato  
ices2024_dmos.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 188.07 kB
Formato Adobe PDF
188.07 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1734661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact