We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the -th Gaussian map for a general curve of genus (that depends quadratically with) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.

Higher Gaussian Maps on K3 Surfaces / Rios Ortiz, Angel David. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2024:10(2024), pp. 8185-8212. [10.1093/imrn/rnad165]

Higher Gaussian Maps on K3 Surfaces

Rios Ortiz, Angel David
2024

Abstract

We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the -th Gaussian map for a general curve of genus (that depends quadratically with) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.
2024
Hyperkahler manifolds; algebraic geometry; K3 surfaces; Gaussian maps
01 Pubblicazione su rivista::01a Articolo in rivista
Higher Gaussian Maps on K3 Surfaces / Rios Ortiz, Angel David. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2024:10(2024), pp. 8185-8212. [10.1093/imrn/rnad165]
File allegati a questo prodotto
File Dimensione Formato  
Rios Ortiz_Higher-Gaussian-maps_2022.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 500.38 kB
Formato Adobe PDF
500.38 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1734425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact