We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the -th Gaussian map for a general curve of genus (that depends quadratically with) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.
Higher Gaussian Maps on K3 Surfaces / Rios Ortiz, Angel David. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2024:10(2024), pp. 8185-8212. [10.1093/imrn/rnad165]
Higher Gaussian Maps on K3 Surfaces
Rios Ortiz, Angel David
2024
Abstract
We give sufficient conditions for the surjectivity of higher Gaussian maps on a polarized K3 surface. As an application, we show that the -th Gaussian map for a general curve of genus (that depends quadratically with) is surjective. Along the proof, we also exhibit an ampleness criterion for divisors in the Hilbert scheme of two points of a K3 surface.File allegati a questo prodotto
| File | Dimensione | Formato | |
|---|---|---|---|
|
Rios Ortiz_Higher-Gaussian-maps_2022.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
500.38 kB
Formato
Adobe PDF
|
500.38 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


