In this paper we study the Roe index of the signature operator of manifolds of bounded geometry. Our main result is the proof of the uniform homotopy invariance of this index. In other words we show that, given an orientation-preserving uniform homotopy equivalence $f: (M,g) \longrightarrow (N.h)$ between two oriented manifolds of bounded geometry, . Moreover we also show that the same result holds if a group $\Gamma$ acts on M and N by isometries and f is $\Gamma$-equivariant. The only assumption on the action of $\Gamma$ is that the quotients are again manifolds of bounded geometry.

Uniform homotopy invariance of Roe Index of the signature operator / Spessato, Stefano. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 217:2(2023). [10.1007/s10711-022-00753-z]

Uniform homotopy invariance of Roe Index of the signature operator

Spessato, Stefano
2023

Abstract

In this paper we study the Roe index of the signature operator of manifolds of bounded geometry. Our main result is the proof of the uniform homotopy invariance of this index. In other words we show that, given an orientation-preserving uniform homotopy equivalence $f: (M,g) \longrightarrow (N.h)$ between two oriented manifolds of bounded geometry, . Moreover we also show that the same result holds if a group $\Gamma$ acts on M and N by isometries and f is $\Gamma$-equivariant. The only assumption on the action of $\Gamma$ is that the quotients are again manifolds of bounded geometry.
2023
Roe index, bounded geometry, signature operator, coarse algebra
01 Pubblicazione su rivista::01a Articolo in rivista
Uniform homotopy invariance of Roe Index of the signature operator / Spessato, Stefano. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - 217:2(2023). [10.1007/s10711-022-00753-z]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1734409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact