Autophagy is a vital process through which cellular material and dysfunctional organelles are degraded and recycled, and it is inhibited by the metabolic checkpoint kinase MTOR. Autophagy also targets intracellular bacteria (a process termed xenophagy) for lysosomal degradation, thereby playing a key role in innate immunity. In the past few years, the identification of molecules, such as CALCOCO2/NDP52, SQSTM1/p62 and ubiquitin, implicated in the specific targeting of intracellular bacteria, received considerable attention. However, it remains unclear how xenophagy is initiated, since this process commonly occurs in metabolically replete cells. In a recent study, we demonstrated that infection with Shigella and Salmonella triggered an early state of intracellular amino acid (AA) starvation causing MTOR dissociation from endomembranes, downregulation of MTOR activity and activation of the EIF2AK4/GCN2-EIF2S1/eIF2α/ATF3 signaling axis. We also observed that AA starvation was caused by host membrane damage, which appeared to be transient in the case of Salmonella and sustained in Shigella-infected cells, thus highlighting the existence of key timing disparities in xenophagy triggering, depending on the bacterial pathogen. Together, our findings demonstrate that xenophagy is only one arm of a more general metabolic switch geared toward AA starvation in bacteria-infected cells.
Bacterial autophagy: the trigger, the target and the timing / Tattoli, I; Sorbara, Mt; Philpott, Dj; Girardin, Se.. - In: AUTOPHAGY. - ISSN 1554-8627. - Dec;8:12(2012), pp. 1848-1850. [10.4161/auto.21863]
Bacterial autophagy: the trigger, the target and the timing
Tattoli I;
2012
Abstract
Autophagy is a vital process through which cellular material and dysfunctional organelles are degraded and recycled, and it is inhibited by the metabolic checkpoint kinase MTOR. Autophagy also targets intracellular bacteria (a process termed xenophagy) for lysosomal degradation, thereby playing a key role in innate immunity. In the past few years, the identification of molecules, such as CALCOCO2/NDP52, SQSTM1/p62 and ubiquitin, implicated in the specific targeting of intracellular bacteria, received considerable attention. However, it remains unclear how xenophagy is initiated, since this process commonly occurs in metabolically replete cells. In a recent study, we demonstrated that infection with Shigella and Salmonella triggered an early state of intracellular amino acid (AA) starvation causing MTOR dissociation from endomembranes, downregulation of MTOR activity and activation of the EIF2AK4/GCN2-EIF2S1/eIF2α/ATF3 signaling axis. We also observed that AA starvation was caused by host membrane damage, which appeared to be transient in the case of Salmonella and sustained in Shigella-infected cells, thus highlighting the existence of key timing disparities in xenophagy triggering, depending on the bacterial pathogen. Together, our findings demonstrate that xenophagy is only one arm of a more general metabolic switch geared toward AA starvation in bacteria-infected cells.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


