Luciferase reporter assays (LRAs) are widely used to assess the activity of specific signal transduction pathways. Although powerful, rapid and convenient, this technique can also generate artifactual results, as revealed for instance in the case of high throughput screens of inhibitory molecules. Here we demonstrate that the previously reported inhibitory effect of the Nod-like receptor (NLR) protein NLRX1 on NF-κB- and type I interferon-dependent pathways in LRAs was a nonspecific consequence of the overexpression of the NLRX1 leucine-rich repeat (LRR) domain. By comparing luciferase activity and luciferase gene expression using quantitative PCR from the same samples, we showed that NLRX1 inhibited LRAs in a post-transcriptional manner. In agreement, NLRX1 also repressed LRAs if luciferase was expressed under the control of a constitutive promoter, although the degree of inhibition by NLRX1 seemed to correlate with the dynamic inducibility of luciferase reporter constructs. Similarly, we observed that overexpression of another NLR protein, NLRC3, also resulted in artifactual inhibition of LRAs; thus suggesting that the capacity to inhibit LRAs at a post-transcriptional level is not unique to NLRX1. Finally, we demonstrate that host type I interferon response to Sendai virus infection was normal in NLRX1-silenced human HEK293T cells. Our results thus highlight the fact that LRAs are not a reliable technique to assess the inhibitory function of NLRs, and possibly other overexpressed proteins, on signal transduction pathways.

Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3 / A., Ling; F., Soares; D. O., Croitoru; Tattoli, I; L. A. M., Carneiro; M., Boniotto; S., Benko; D. J., Philpott; and S. E., Girardin. - In: JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 1083-351X. - 287:34(2012), pp. 28705-28716. [10.1074/jbc.M111.333146]

Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3

Tattoli I;
2012

Abstract

Luciferase reporter assays (LRAs) are widely used to assess the activity of specific signal transduction pathways. Although powerful, rapid and convenient, this technique can also generate artifactual results, as revealed for instance in the case of high throughput screens of inhibitory molecules. Here we demonstrate that the previously reported inhibitory effect of the Nod-like receptor (NLR) protein NLRX1 on NF-κB- and type I interferon-dependent pathways in LRAs was a nonspecific consequence of the overexpression of the NLRX1 leucine-rich repeat (LRR) domain. By comparing luciferase activity and luciferase gene expression using quantitative PCR from the same samples, we showed that NLRX1 inhibited LRAs in a post-transcriptional manner. In agreement, NLRX1 also repressed LRAs if luciferase was expressed under the control of a constitutive promoter, although the degree of inhibition by NLRX1 seemed to correlate with the dynamic inducibility of luciferase reporter constructs. Similarly, we observed that overexpression of another NLR protein, NLRC3, also resulted in artifactual inhibition of LRAs; thus suggesting that the capacity to inhibit LRAs at a post-transcriptional level is not unique to NLRX1. Finally, we demonstrate that host type I interferon response to Sendai virus infection was normal in NLRX1-silenced human HEK293T cells. Our results thus highlight the fact that LRAs are not a reliable technique to assess the inhibitory function of NLRs, and possibly other overexpressed proteins, on signal transduction pathways.
2012
01 Pubblicazione su rivista::01a Articolo in rivista
Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3 / A., Ling; F., Soares; D. O., Croitoru; Tattoli, I; L. A. M., Carneiro; M., Boniotto; S., Benko; D. J., Philpott; and S. E., Girardin. - In: JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 1083-351X. - 287:34(2012), pp. 28705-28716. [10.1074/jbc.M111.333146]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1734344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact