Diffusion-based generative models are machine learning models that use diffusion processes to learn the probability distribution of high-dimensional data. In recent years they have become extremely successful in generating multimedia content. However, it is still unknown whether such models can be used to generate high-quality datasets of physical models. In this work we use a Landau-Ginzburg-like diffusion model to infer the distribution of a two-dimensional bond-diluted Ising model. Our approach is simple and effective, and we show that the generated samples correctly reproduce the statistical and critical properties of the physical model.

Diffusion reconstruction for the diluted Ising model / Bae, Stefano; Marinari, Enzo; Ricci-Tersenghi, Federico. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 111:2(2025), pp. 1-5. [10.1103/PhysRevE.111.L023301]

Diffusion reconstruction for the diluted Ising model

Stefano Bae
Primo
;
Enzo Marinari;Federico Ricci-Tersenghi
2025

Abstract

Diffusion-based generative models are machine learning models that use diffusion processes to learn the probability distribution of high-dimensional data. In recent years they have become extremely successful in generating multimedia content. However, it is still unknown whether such models can be used to generate high-quality datasets of physical models. In this work we use a Landau-Ginzburg-like diffusion model to infer the distribution of a two-dimensional bond-diluted Ising model. Our approach is simple and effective, and we show that the generated samples correctly reproduce the statistical and critical properties of the physical model.
2025
machine learning; disordered systems; statistical mechanics
01 Pubblicazione su rivista::01a Articolo in rivista
Diffusion reconstruction for the diluted Ising model / Bae, Stefano; Marinari, Enzo; Ricci-Tersenghi, Federico. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 111:2(2025), pp. 1-5. [10.1103/PhysRevE.111.L023301]
File allegati a questo prodotto
File Dimensione Formato  
Bae_Diffusion_2025.pdf

solo gestori archivio

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 357.31 kB
Formato Adobe PDF
357.31 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1733852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact