This dissertation presents a comprehensive framework for multi-hazard risk assessment in underground infrastructures, focusing on the interplay between earthquakes, structural collapse, fire, and evacuation dynamics. A detailed investigation into seismic geostatistics-4D, Incremental Dynamic Analysis (IDA) and structural fragility, fire in confined environment, and the analysis of evacuation conditions is conducted. The analyses consider the probabilities of events that single (earthquake/structural collapse/fire happening on its own) or not mutually exclusive (such as seismic-induced structural collapse, which may or may not lead to a fire), independent (which occur without affecting probabilities of occurrence of others) and non-independent (where one event increases/decrease the probability others). Through the Gu@larp mathematical model, the study offers a refined approach to multi-hazard risk-based design for underground infrastructure. The dissertation is organized into five macro-chapters. Chapter 1 introduces the need for a comprehensive framework to assess multi-hazard risks in underground infrastructures. These systems, which play an essential role in diverse environments, face increased risks from both natural and human-made hazards, including seismic events, structural collapse, and fires. The study aims to address these vulnerabilities by developing an integrated quantitative risk assessment framework that combines these hazards into a unified approach. The chapter outlines the specific challenges currently faced in multi-hazard risk assessment, such as the absence of methodologies that consider the interactions between multiple hazards and the importance of accurate scenario identification. Through clearly defined objectives, such as advancing risk modelling techniques and understanding in depth human behaviours and transfer it to evacuation analysis, Chapter 1sets the stage for the technical analysis and methodologies that will follow. Chapter 2 provides an in-depth analysis of the hazards affecting underground infrastructures, focusing on the integration of seismic, structural, fire, and evacuation risks. It begins with an in-depth review of the current state of knowledge with a discussion on seismicity and hazard estimation methods tailored to underground environments, introducing seismic geostatistics-4D analysis as a novel tool for capturing the spatial and temporal complexity of seismic data. The chapter also explores seismic-induced structural collapses. And fire dynamic is examined through the lens of tenability limits in confined spaces. Evacuation challenges are addressed, focusing on the dynamics of underground environments during fires and earthquakes while dispelling misconceptions about human behaviour in emergencies. The comprehensive risk analysis framework integrates these hazards, providing insights into societal influences on risk perception and advancing methodologies for a multi-hazard risk assessment model that considers both individual risks and their interdependencies to ensure the safety of underground infrastructures. Chapter 3 focusing on developing a comprehensive multi-hazard risk assessment framework, analysing joint occurrences of different hazards. Theoretical foundations, including the integration of Aristotelian logic and complex systems theory, support scenario identification and modelling for multi-hazard modelling. The ALARP principle is discussed through legal and philosophical perspectives. Incorporating ALARP and Black Swan events into a multi-hazard framework necessitates a broader range of probabilistic concepts, from basic unconditional probabilities to complex multi-conditional probabilities. This broader spectrum provides a foundational basis for probabilistic approaches in analysing hazards within multi-hazard risk assessment. Key four risk indicators are used to evaluate risk exposure, aligning with ethical principles for Gu@larp method, combining scenario quantic-modelling with ALARP, providing a comprehensive framework for multi-hazard risk assessment. The interest of the dissertation proposed here concerns the improvement of modelling support for the design and assessment of seismic and fire risks for the structural components of underground environments: An example developed and presented in this dissertation is the analysis of the specific seismic actions related to the damage simulated on the blocks in the CERN underground environment, where fires developed either independently or due to falling blocks, with evacuation scenarios based on human behaviour considered during these events. This dissertation in Chapter 4 applies advanced modelling techniques to characterize these scenarios, integrating seismic geostatistical-4D analysis (CoKriging), structural assessment through Incremental Dynamic Analysis (IDA), fire modelling with the Fire Dynamics Simulator (FDS), and evacuation modelling via Performance-Based Design (PBD). All these methods are implemented within the developed Gu@larp quantitative multi-hazard risk assessment framework. Key conclusions emphasise the importance of understanding multi-hazard scenarios to enhance safety in underground environments in Chapter 5. Lessons learned highlight the integration of multi-hazard risk assessment methodologies with practical design strategies. The study's limitations are acknowledged, along with recommendations for future research directions.
Questa tesi presenta un quadro complessivo per la valutazione del rischio multi-pericolo nelle infrastrutture sotterranee, concentrandosi sull'interazione tra terremoti, collasso strutturale, incendi e dinamiche di evacuazione. Viene condotta un'analisi dettagliata sulla geostatistica sismica-4D, l'Analisi Dinamica Incrementale (IDA) e la fragilità strutturale, sugli incendi in ambienti confinati e sull'analisi delle condizioni di evacuazione. Le analisi considerano le probabilità di eventi singoli (terremoto/crollo strutturale/incendio che si verificano autonomamente) o non mutuamente esclusivi (come un crollo strutturale indotto da un sisma, che può o meno portare a un incendio), indipendenti (che si verificano senza influenzare le probabilità di altri eventi) e non indipendenti (in cui un evento aumenta o diminuisce la probabilità degli altri). Attraverso il modello matematico Gu@larp, lo studio propone un approccio perfezionato alla progettazione basata sul rischio multi-hazard per le infrastrutture sotterranee. La dissertazione è organizzata in cinque macro-capitoli. Il Capitolo 1 introduce la necessità di un quadro completo per valutare i rischi multi-hazard nelle infrastrutture sotterranee. Questi sistemi, che svolgono un ruolo essenziale in una varietà di contesti, affrontano rischi crescenti sia naturali che di origine antropica, tra cui eventi sismici, crolli strutturali e incendi. Lo studio mira a rispondere a queste vulnerabilità sviluppando un quadro integrato di valutazione quantitativa del rischio che combina questi pericoli in un approccio unificato. Il capitolo delinea le sfide specifiche attualmente affrontate nella valutazione del rischio multi-hazard, come l'assenza di metodologie che considerano le interazioni tra più pericoli e l'importanza dell'identificazione accurata degli scenari. Attraverso obiettivi chiaramente definiti, come il miglioramento delle tecniche di modellazione del rischio e la comprensione approfondita dei comportamenti umani da trasferire nell'analisi dell'evacuazione, il Capitolo 1 prepara il terreno per le analisi tecniche e le metodologie che seguiranno. Il Capitolo 2 fornisce un'analisi approfondita dei pericoli che influenzano le infrastrutture sotterranee, concentrandosi sull'integrazione dei rischi sismici, strutturali, di incendio e di evacuazione. Inizia con una revisione dettagliata dello stato attuale delle conoscenze, con una discussione sulla sismicità e i metodi di stima dei rischi specificamente adattati agli ambienti sotterranei, introducendo l'analisi geostatistica sismica 4D come uno strumento innovativo per catturare la complessità spaziale e temporale dei dati sismici. Il capitolo esplora anche i crolli strutturali indotti dai sismi. La dinamica degli incendi viene esaminata attraverso la lente dei limiti di tenibilità in spazi confinati. Le sfide legate all'evacuazione vengono affrontate, concentrandosi sulle dinamiche degli ambienti sotterranei durante incendi e terremoti, sfatando i preconcetti sul comportamento umano in situazioni di emergenza. Il quadro completo per l'analisi del rischio integra questi pericoli, fornendo approfondimenti sulle influenze sociali nella percezione del rischio e migliorando le metodologie per un modello di valutazione del rischio multi-hazard che considera sia i rischi individuali che le loro interdipendenze, al fine di garantire la sicurezza delle infrastrutture sotterranee. Il Capitolo 3 si concentra sullo sviluppo di un quadro completo per la valutazione del rischio multi-hazard, analizzando le occorrenze congiunte di diversi pericoli. Le basi teoriche, tra cui l'integrazione della logica aristotelica e della teoria dei sistemi complessi, supportano l'identificazione degli scenari e la modellazione per la valutazione multi-hazard. Il principio ALARP viene discusso attraverso prospettive legali e filosofiche. Integrare il principio ALARP e gli eventi Cigno Nero in un quadro multi-rischio richiede una gamma più ampia di concetti probabilistici, dalle probabilità incondizionate di base alle probabilità multi-condizionali complesse. Questo spettro più ampio fornisce una base per approcci probabilistici nell'analisi dei pericoli all'interno della valutazione del rischio multi-hazard. Vengono utilizzati quattro indicatori chiave del rischio per valutare l'esposizione al rischio, allineandosi ai principi etici del metodo Gu@larp, combinando la modellazione quantistica degli scenari con l'ALARP, fornendo un quadro completo per la valutazione del rischio multi-hazard. L'interesse della tesi qui proposta riguarda il miglioramento del supporto alla modellazione per la progettazione e la valutazione dei rischi sismici e di incendio per i componenti strutturali degli ambienti sotterranei: Un esempio sviluppato e presentato in questa tesi è l'analisi delle azioni sismiche specifiche legate ai danni simulati sui blocchi nell'ambiente sotterraneo del CERN, dove si sono sviluppati incendi sia indipendentemente sia a causa della caduta dei blocchi, con scenari di evacuazione basati sul comportamento umano considerato durante questi eventi. Questa tesi, nel Capitolo 4 applica tecniche di modellazione avanzate per caratterizzare questi scenari, integrando l'analisi geostatistica sismica 4D (CoKriging), la valutazione strutturale tramite Analisi Dinamica Incrementale (IDA), la modellazione dell’incendio con il Fire Dynamics Simulator (FDS) e la modellazione dell’evacuazione secondo i principi della Performance-Based Design (PBD). Tutti questi metodi sono implementati all'interno del sviluppato framework di valutazione del rischio multirischio Gu@larp. Le conclusioni principali sottolineano l'importanza di comprendere gli scenari multi-rischio per migliorare la sicurezza negli ambienti sotterranei nel Capitolo 5. Le lezioni apprese evidenziano l'integrazione di metodologie di valutazione del rischio multi-rischio con strategie di progettazione pratiche. Le limitazioni dello studio vengono riconosciute, insieme a raccomandazioni per future direzioni di ricerca.
Risk assessment from multiple hazards in underground systems / Alakbarli, Emin. - (2025 Jan 23).
Risk assessment from multiple hazards in underground systems
ALAKBARLI, EMIN
23/01/2025
Abstract
This dissertation presents a comprehensive framework for multi-hazard risk assessment in underground infrastructures, focusing on the interplay between earthquakes, structural collapse, fire, and evacuation dynamics. A detailed investigation into seismic geostatistics-4D, Incremental Dynamic Analysis (IDA) and structural fragility, fire in confined environment, and the analysis of evacuation conditions is conducted. The analyses consider the probabilities of events that single (earthquake/structural collapse/fire happening on its own) or not mutually exclusive (such as seismic-induced structural collapse, which may or may not lead to a fire), independent (which occur without affecting probabilities of occurrence of others) and non-independent (where one event increases/decrease the probability others). Through the Gu@larp mathematical model, the study offers a refined approach to multi-hazard risk-based design for underground infrastructure. The dissertation is organized into five macro-chapters. Chapter 1 introduces the need for a comprehensive framework to assess multi-hazard risks in underground infrastructures. These systems, which play an essential role in diverse environments, face increased risks from both natural and human-made hazards, including seismic events, structural collapse, and fires. The study aims to address these vulnerabilities by developing an integrated quantitative risk assessment framework that combines these hazards into a unified approach. The chapter outlines the specific challenges currently faced in multi-hazard risk assessment, such as the absence of methodologies that consider the interactions between multiple hazards and the importance of accurate scenario identification. Through clearly defined objectives, such as advancing risk modelling techniques and understanding in depth human behaviours and transfer it to evacuation analysis, Chapter 1sets the stage for the technical analysis and methodologies that will follow. Chapter 2 provides an in-depth analysis of the hazards affecting underground infrastructures, focusing on the integration of seismic, structural, fire, and evacuation risks. It begins with an in-depth review of the current state of knowledge with a discussion on seismicity and hazard estimation methods tailored to underground environments, introducing seismic geostatistics-4D analysis as a novel tool for capturing the spatial and temporal complexity of seismic data. The chapter also explores seismic-induced structural collapses. And fire dynamic is examined through the lens of tenability limits in confined spaces. Evacuation challenges are addressed, focusing on the dynamics of underground environments during fires and earthquakes while dispelling misconceptions about human behaviour in emergencies. The comprehensive risk analysis framework integrates these hazards, providing insights into societal influences on risk perception and advancing methodologies for a multi-hazard risk assessment model that considers both individual risks and their interdependencies to ensure the safety of underground infrastructures. Chapter 3 focusing on developing a comprehensive multi-hazard risk assessment framework, analysing joint occurrences of different hazards. Theoretical foundations, including the integration of Aristotelian logic and complex systems theory, support scenario identification and modelling for multi-hazard modelling. The ALARP principle is discussed through legal and philosophical perspectives. Incorporating ALARP and Black Swan events into a multi-hazard framework necessitates a broader range of probabilistic concepts, from basic unconditional probabilities to complex multi-conditional probabilities. This broader spectrum provides a foundational basis for probabilistic approaches in analysing hazards within multi-hazard risk assessment. Key four risk indicators are used to evaluate risk exposure, aligning with ethical principles for Gu@larp method, combining scenario quantic-modelling with ALARP, providing a comprehensive framework for multi-hazard risk assessment. The interest of the dissertation proposed here concerns the improvement of modelling support for the design and assessment of seismic and fire risks for the structural components of underground environments: An example developed and presented in this dissertation is the analysis of the specific seismic actions related to the damage simulated on the blocks in the CERN underground environment, where fires developed either independently or due to falling blocks, with evacuation scenarios based on human behaviour considered during these events. This dissertation in Chapter 4 applies advanced modelling techniques to characterize these scenarios, integrating seismic geostatistical-4D analysis (CoKriging), structural assessment through Incremental Dynamic Analysis (IDA), fire modelling with the Fire Dynamics Simulator (FDS), and evacuation modelling via Performance-Based Design (PBD). All these methods are implemented within the developed Gu@larp quantitative multi-hazard risk assessment framework. Key conclusions emphasise the importance of understanding multi-hazard scenarios to enhance safety in underground environments in Chapter 5. Lessons learned highlight the integration of multi-hazard risk assessment methodologies with practical design strategies. The study's limitations are acknowledged, along with recommendations for future research directions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_dottorato_Alakbarli.pdf
accesso aperto
Note: tesi completa
Tipologia:
Tesi di dottorato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
20.6 MB
Formato
Adobe PDF
|
20.6 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


