The literature encompasses various approaches to address sparsity in the context of cluster analysis, often by adding regularization terms to weight the role of variables in clustering processes. In the work presented here, instead, an L0-regularization term is employed on fuzzy membership degrees to enhance the standard Fuzzy K-Means algorithm. The new algorithm helps to assign units very close to the corresponding prototype with a membership degree equal to 1 without necessarily compromising the potential ambiguity in the membership of some units.

L0-penalized membership in sparse fuzzy clustering / Ferraro, MARIA BRIGIDA; Forti, Marco; Giordani, Paolo. - (2025). (Intervento presentato al convegno 52nd Scientific Meeting of the Italian Statistical Society (SIS 2024) tenutosi a Bari).

L0-penalized membership in sparse fuzzy clustering

Maria Brigida Ferraro;Marco Forti
;
Paolo Giordani
2025

Abstract

The literature encompasses various approaches to address sparsity in the context of cluster analysis, often by adding regularization terms to weight the role of variables in clustering processes. In the work presented here, instead, an L0-regularization term is employed on fuzzy membership degrees to enhance the standard Fuzzy K-Means algorithm. The new algorithm helps to assign units very close to the corresponding prototype with a membership degree equal to 1 without necessarily compromising the potential ambiguity in the membership of some units.
2025
52nd Scientific Meeting of the Italian Statistical Society (SIS 2024)
Clustering; Fuzzy K-Means; Sparsity; L0-regularization
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
L0-penalized membership in sparse fuzzy clustering / Ferraro, MARIA BRIGIDA; Forti, Marco; Giordani, Paolo. - (2025). (Intervento presentato al convegno 52nd Scientific Meeting of the Italian Statistical Society (SIS 2024) tenutosi a Bari).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1733208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact