A novel clustering model is presented for three-way data that refer to a set of units on which variables are measured or collected at different occasions. The proposal originates from the CPclus model, where both clusters of units and components for variables and occasions are identified in a k-means based framework. Here we develop a hierarchical variant, called H-CPclus, which is implemented using a divisive approach, where the non-hierarchical model is applied recursively to obtain nested partitions. This allows the results to be displayed in a standard dendrogram fashion.
Hierarchical clustering for three-way data / Giordani, Paolo; Levantesi, Susanna; Nigri, Andrea; Vicari, Donatella. - (2025), pp. 113-118. (Intervento presentato al convegno 52° Riunione Scientifica della Società Italiana di Statistica tenutosi a Bari) [10.1007/978-3-031-64447-4_19].
Hierarchical clustering for three-way data
Giordani, Paolo;Levantesi, Susanna;Nigri, Andrea
;Vicari, Donatella
2025
Abstract
A novel clustering model is presented for three-way data that refer to a set of units on which variables are measured or collected at different occasions. The proposal originates from the CPclus model, where both clusters of units and components for variables and occasions are identified in a k-means based framework. Here we develop a hierarchical variant, called H-CPclus, which is implemented using a divisive approach, where the non-hierarchical model is applied recursively to obtain nested partitions. This allows the results to be displayed in a standard dendrogram fashion.File | Dimensione | Formato | |
---|---|---|---|
Giordani_hierarchical-clustering_2025.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
835.8 kB
Formato
Adobe PDF
|
835.8 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.