A novel clustering model is presented for three-way data that refer to a set of units on which variables are measured or collected at different occasions. The proposal originates from the CPclus model, where both clusters of units and components for variables and occasions are identified in a k-means based framework. Here we develop a hierarchical variant, called H-CPclus, which is implemented using a divisive approach, where the non-hierarchical model is applied recursively to obtain nested partitions. This allows the results to be displayed in a standard dendrogram fashion.

Hierarchical clustering for three-way data / Giordani, Paolo; Levantesi, Susanna; Nigri, Andrea; Vicari, Donatella. - (2025), pp. 113-118. (Intervento presentato al convegno 52° Riunione Scientifica della Società Italiana di Statistica tenutosi a Bari) [10.1007/978-3-031-64447-4_19].

Hierarchical clustering for three-way data

Giordani, Paolo;Levantesi, Susanna;Nigri, Andrea
;
Vicari, Donatella
2025

Abstract

A novel clustering model is presented for three-way data that refer to a set of units on which variables are measured or collected at different occasions. The proposal originates from the CPclus model, where both clusters of units and components for variables and occasions are identified in a k-means based framework. Here we develop a hierarchical variant, called H-CPclus, which is implemented using a divisive approach, where the non-hierarchical model is applied recursively to obtain nested partitions. This allows the results to be displayed in a standard dendrogram fashion.
2025
52° Riunione Scientifica della Società Italiana di Statistica
three-way data; dimensionality reduction; hierarchical clustering; Candecomp/Parafac
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Hierarchical clustering for three-way data / Giordani, Paolo; Levantesi, Susanna; Nigri, Andrea; Vicari, Donatella. - (2025), pp. 113-118. (Intervento presentato al convegno 52° Riunione Scientifica della Società Italiana di Statistica tenutosi a Bari) [10.1007/978-3-031-64447-4_19].
File allegati a questo prodotto
File Dimensione Formato  
Giordani_hierarchical-clustering_2025.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 835.8 kB
Formato Adobe PDF
835.8 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1732259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact