Let M be a compact smoothly stratified pseudo-manifold endowed with a wedge metric. Let M_G be a Galois-covering. Under additional assumptions on M, satisfied for example by Witt pseudo-manifolds, we show that the L2-Betti numbers and the Novikov–Shubin invariants are well defined. We then establish their invariance under a smoothly stratified codimension-preserving homotopy equivalence, thus extending results of Dodziuk, Gromov, and Shubin to these pseudo-manifolds.

Stability of L2-Invariants on Stratified Spaces / Bei, Francesco; Piazza, Paolo; Vertman, Boris. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2024:21(2024), pp. 13695-13723. [10.1093/imrn/rnae214]

Stability of L2-Invariants on Stratified Spaces

Bei, Francesco
;
Piazza, Paolo;
2024

Abstract

Let M be a compact smoothly stratified pseudo-manifold endowed with a wedge metric. Let M_G be a Galois-covering. Under additional assumptions on M, satisfied for example by Witt pseudo-manifolds, we show that the L2-Betti numbers and the Novikov–Shubin invariants are well defined. We then establish their invariance under a smoothly stratified codimension-preserving homotopy equivalence, thus extending results of Dodziuk, Gromov, and Shubin to these pseudo-manifolds.
2024
Stratified pseudomanifolds; witt spaces; Novikov-Shubin invariants; stratified homotopy invariance
01 Pubblicazione su rivista::01a Articolo in rivista
Stability of L2-Invariants on Stratified Spaces / Bei, Francesco; Piazza, Paolo; Vertman, Boris. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1073-7928. - 2024:21(2024), pp. 13695-13723. [10.1093/imrn/rnae214]
File allegati a questo prodotto
File Dimensione Formato  
Bei_Stability of L2-Invariants_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Contatta l'autore
Bei_postprint_Stability of L2-Invariants_2024.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1731473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact