We examine the properties of nonlinear least squares (NLS) estimator for a nonlinear extension of the class of heterogeneous autoregressive (HAR) models for realized covariance (RC) matrices. The Monte Carlo (MC) experiments verify the asymptotic properties of the OLS for multivariate HAR specifications, used as a benchmark. Then we replicate the experiment to verify the same properties for the Hadamard exponential (HE)-based HAR extensions, establishing the convergence of regular HAR coefficients in all cases, while the asymptotic normality of the NLS estimates is uniquely confirmed for the “HE_vech-HAR” specification with log-transformed RC series. The only persistent but relatively narrow asymptotic bias is evident for the “HE” parameter estimate. We submit models in MC exercises to several sensitivity checks and show the robustness of corresponding results.
Asymptotic Properties of the Nonlinear Least Squares Estimator in HE-HAR Models / Dzuverovic, Emilija; Otranto, Edoardo. - (2022), pp. 2024-2029. (Intervento presentato al convegno SIS 2022 tenutosi a Caserta).
Asymptotic Properties of the Nonlinear Least Squares Estimator in HE-HAR Models
Edoardo Otranto
2022
Abstract
We examine the properties of nonlinear least squares (NLS) estimator for a nonlinear extension of the class of heterogeneous autoregressive (HAR) models for realized covariance (RC) matrices. The Monte Carlo (MC) experiments verify the asymptotic properties of the OLS for multivariate HAR specifications, used as a benchmark. Then we replicate the experiment to verify the same properties for the Hadamard exponential (HE)-based HAR extensions, establishing the convergence of regular HAR coefficients in all cases, while the asymptotic normality of the NLS estimates is uniquely confirmed for the “HE_vech-HAR” specification with log-transformed RC series. The only persistent but relatively narrow asymptotic bias is evident for the “HE” parameter estimate. We submit models in MC exercises to several sensitivity checks and show the robustness of corresponding results.| File | Dimensione | Formato | |
|---|---|---|---|
|
Sis-2022-4c-low.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
109.14 MB
Formato
Adobe PDF
|
109.14 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


