In this paper we consider a linear elliptic operator E with real constant coefficients of order 2m in two independent variables without lower order terms. For this equation, we consider linear BVPs in which the boundary operators T_1,...,T_m are of order m and satisfy the Lopatinskii-Shapiro condition with respect to E. We prove boundary completeness properties for the system {(T_1\om_k,..., T_m\om_k)}, where {\om_k} is a system of polynomial solutions of the equation Eu=0.

Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations / Cialdea, Alberto; Lanzara, Flavia. - In: CONSTRUCTIVE MATHEMATICAL ANALYSIS. - ISSN 2651-2939. - 7:(2024), pp. 129-141. [10.33205/cma.1540457]

Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations

Alberto Cialdea;Flavia Lanzara
2024

Abstract

In this paper we consider a linear elliptic operator E with real constant coefficients of order 2m in two independent variables without lower order terms. For this equation, we consider linear BVPs in which the boundary operators T_1,...,T_m are of order m and satisfy the Lopatinskii-Shapiro condition with respect to E. We prove boundary completeness properties for the system {(T_1\om_k,..., T_m\om_k)}, where {\om_k} is a system of polynomial solutions of the equation Eu=0.
2024
Completeness theorems; Lopatinskii condition; elliptic equations of higher order; partial differential equations with constant coefficients
01 Pubblicazione su rivista::01a Articolo in rivista
Completeness theorems related to BVPs satisfying the Lopatinskii condition for higher order elliptic equations / Cialdea, Alberto; Lanzara, Flavia. - In: CONSTRUCTIVE MATHEMATICAL ANALYSIS. - ISSN 2651-2939. - 7:(2024), pp. 129-141. [10.33205/cma.1540457]
File allegati a questo prodotto
File Dimensione Formato  
Cialdea_Completeness-theorems_2024.pdf

accesso aperto

Note: versione definitiva
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 400.4 kB
Formato Adobe PDF
400.4 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1730441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact