A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).

Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume / Yildirim, Onur; Tsaturyan, Arshak; Damin, Alessandro; Nejrotti, Stefano; Crocellà, Valentina; Gallo, Angelo; Chierotti, Michele Remo; Bonomo, Matteo; Barolo, Claudia. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 15:12(2023), pp. 15819-15831. [10.1021/acsami.2c20853]

Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume

Bonomo, Matteo
;
2023

Abstract

A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).
2023
DFT; covalent organic frameworks; gas storage; iodine; porous organic polymers
01 Pubblicazione su rivista::01a Articolo in rivista
Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume / Yildirim, Onur; Tsaturyan, Arshak; Damin, Alessandro; Nejrotti, Stefano; Crocellà, Valentina; Gallo, Angelo; Chierotti, Michele Remo; Bonomo, Matteo; Barolo, Claudia. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 15:12(2023), pp. 15819-15831. [10.1021/acsami.2c20853]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1730035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact